Chemistry, microphysics and dynamics of the polar stratosphere: ozone loss and climate-chemistry interactions
Chemistry, microphysics and dynamics of the polar stratosphere: ozone loss and climate-chemistry interactions
Editor(s): D. Knopf, R. Müller, F. Khosrawi, and M. von Hobe Overview paper
The special issue "Chemistry, microphysics and dynamics of the polar stratosphere: ozone loss and climate-chemistry interactions" was motivated by the EU-project RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of arctic stratospheric ozone loss and its climate interactions) and covers all aspects of polar stratospheric ozone, polar stratospheric clouds, and other dynamical and chemical processes relevant in the polar stratosphere. It is open for contributions on chemistry, microphysics, radiation, dynamics, small and large scale transport phenomena, mesoscale processes and polar-midlatitudinal exchange. We particularly encourage contributions on ClOx/BrOx chemistry, chlorine activation, NAT nucleation mechanisms, on transport and mixing of processed air to lower latitudes, and on polar aspects of ozone/climate interactions, including empirical analyses and coupled chemistry/climate model results and coupling between tropospheric climate patterns and high latitude ozone.

Download citations of all papers

12 Jul 2016
Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds
Martin Ebert, Ralf Weigel, Konrad Kandler, Gebhard Günther, Sergej Molleker, Jens-Uwe Grooß, Bärbel Vogel, Stephan Weinbruch, and Stephan Borrmann
Atmos. Chem. Phys., 16, 8405–8421, https://doi.org/10.5194/acp-16-8405-2016,https://doi.org/10.5194/acp-16-8405-2016, 2016
Short summary
25 Nov 2014
Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?
R. Weigel, C. M. Volk, K. Kandler, E. Hösen, G. Günther, B. Vogel, J.-U. Grooß, S. Khaykin, G. V. Belyaev, and S. Borrmann
Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014,https://doi.org/10.5194/acp-14-12319-2014, 2014
31 Oct 2014
Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics
W. Woiwode, J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal
Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014,https://doi.org/10.5194/acp-14-11525-2014, 2014
14 Oct 2014
Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex
S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo
Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014,https://doi.org/10.5194/acp-14-10785-2014, 2014
02 Apr 2014
Arctic stratospheric dehydration – Part 2: Microphysical modeling
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014,https://doi.org/10.5194/acp-14-3231-2014, 2014
29 Jan 2014
Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014,https://doi.org/10.5194/acp-14-1055-2014, 2014
07 Nov 2013
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013,https://doi.org/10.5194/acp-13-10859-2013, 2013
06 Nov 2013
Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013,https://doi.org/10.5194/acp-13-10769-2013, 2013
27 Sep 2013
Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT)
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013,https://doi.org/10.5194/acp-13-9577-2013, 2013
16 Sep 2013
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013,https://doi.org/10.5194/acp-13-9233-2013, 2013
27 Nov 2013
Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013,https://doi.org/10.5194/acp-13-11503-2013, 2013
17 Apr 2013
Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010
I. Wohltmann, T. Wegner, R. Müller, R. Lehmann, M. Rex, G. L. Manney, M. L. Santee, P. Bernath, O. Sumińska-Ebersoldt, F. Stroh, M. von Hobe, C. M. Volk, E. Hösen, F. Ravegnani, A. Ulanovsky, and V. Yushkov
Atmos. Chem. Phys., 13, 3909–3929, https://doi.org/10.5194/acp-13-3909-2013,https://doi.org/10.5194/acp-13-3909-2013, 2013
12 Apr 2013
Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013,https://doi.org/10.5194/acp-13-3849-2013, 2013
10 Apr 2013
Montreal Protocol Benefits simulated with CCM SOCOL
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013,https://doi.org/10.5194/acp-13-3811-2013, 2013
15 Mar 2013
An assessment of CALIOP polar stratospheric cloud composition classification
M. C. Pitts, L. R. Poole, A. Lambert, and L. W. Thomason
Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013,https://doi.org/10.5194/acp-13-2975-2013, 2013
08 Mar 2013
Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases
J. C. Laube, A. Keil, H. Bönisch, A. Engel, T. Röckmann, C. M. Volk, and W. T. Sturges
Atmos. Chem. Phys., 13, 2779–2791, https://doi.org/10.5194/acp-13-2779-2013,https://doi.org/10.5194/acp-13-2779-2013, 2013
25 Feb 2013
Mineral dust variability in central West Antarctica associated with ozone depletion
M. Cataldo, H. Evangelista, J. C. Simões, R. H. M. Godoi, I. Simmonds, M. H. Hollanda, I. Wainer, F. Aquino, and R. Van Grieken
Atmos. Chem. Phys., 13, 2165–2175, https://doi.org/10.5194/acp-13-2165-2013,https://doi.org/10.5194/acp-13-2165-2013, 2013
19 Feb 2013
Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009
T. Sonkaew, C. von Savigny, K.-U. Eichmann, M. Weber, A. Rozanov, H. Bovensmann, J. P. Burrows, and J.-U. Grooß
Atmos. Chem. Phys., 13, 1809–1835, https://doi.org/10.5194/acp-13-1809-2013,https://doi.org/10.5194/acp-13-1809-2013, 2013
22 Nov 2012
Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex
T. Wegner, J.-U. Grooß, M. von Hobe, F. Stroh, O. Sumińska-Ebersoldt, C. M. Volk, E. Hösen, V. Mitev, G. Shur, and R. Müller
Atmos. Chem. Phys., 12, 11095–11106, https://doi.org/10.5194/acp-12-11095-2012,https://doi.org/10.5194/acp-12-11095-2012, 2012
10 Oct 2012
Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach
E. Arnone, E. Castelli, E. Papandrea, M. Carlotti, and B. M. Dinelli
Atmos. Chem. Phys., 12, 9149–9165, https://doi.org/10.5194/acp-12-9149-2012,https://doi.org/10.5194/acp-12-9149-2012, 2012
10 Sep 2012
A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010
J. Kuttippurath and G. Nikulin
Atmos. Chem. Phys., 12, 8115–8129, https://doi.org/10.5194/acp-12-8115-2012,https://doi.org/10.5194/acp-12-8115-2012, 2012
06 Aug 2012
Record-breaking ozone loss in the Arctic winter 2010/2011: comparison with 1996/1997
J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, G. Nikulin, M. L. Santee, and L. Froidevaux
Atmos. Chem. Phys., 12, 7073–7085, https://doi.org/10.5194/acp-12-7073-2012,https://doi.org/10.5194/acp-12-7073-2012, 2012
25 Jul 2012
Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex
G. Wetzel, H. Oelhaf, O. Kirner, F. Friedl-Vallon, R. Ruhnke, A. Ebersoldt, A. Kleinert, G. Maucher, H. Nordmeyer, and J. Orphal
Atmos. Chem. Phys., 12, 6581–6592, https://doi.org/10.5194/acp-12-6581-2012,https://doi.org/10.5194/acp-12-6581-2012, 2012
25 Apr 2012
On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar
P. Achtert, M. Karlsson Andersson, F. Khosrawi, and J. Gumbel
Atmos. Chem. Phys., 12, 3791–3798, https://doi.org/10.5194/acp-12-3791-2012,https://doi.org/10.5194/acp-12-3791-2012, 2012
19 Apr 2012
The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model
A. Dörnbrack, M. C. Pitts, L. R. Poole, Y. J. Orsolini, K. Nishii, and H. Nakamura
Atmos. Chem. Phys., 12, 3659–3675, https://doi.org/10.5194/acp-12-3659-2012,https://doi.org/10.5194/acp-12-3659-2012, 2012
02 Feb 2012
ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight
O. Sumińska-Ebersoldt, R. Lehmann, T. Wegner, J.-U. Grooß, E. Hösen, R. Weigel, W. Frey, S. Griessbach, V. Mitev, C. Emde, C. M. Volk, S. Borrmann, M. Rex, F. Stroh, and M. von Hobe
Atmos. Chem. Phys., 12, 1353–1365, https://doi.org/10.5194/acp-12-1353-2012,https://doi.org/10.5194/acp-12-1353-2012, 2012
07 Dec 2011
Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?
J.-U. Grooß, K. Brautzsch, R. Pommrich, S. Solomon, and R. Müller
Atmos. Chem. Phys., 11, 12217–12226, https://doi.org/10.5194/acp-11-12217-2011,https://doi.org/10.5194/acp-11-12217-2011, 2011
11 Nov 2011
The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales
M. Weber, S. Dikty, J. P. Burrows, H. Garny, M. Dameris, A. Kubin, J. Abalichin, and U. Langematz
Atmos. Chem. Phys., 11, 11221–11235, https://doi.org/10.5194/acp-11-11221-2011,https://doi.org/10.5194/acp-11-11221-2011, 2011
19 Aug 2011
Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010
F. Khosrawi, J. Urban, M. C. Pitts, P. Voelger, P. Achtert, M. Kaphlanov, M. L. Santee, G. L. Manney, D. Murtagh, and K.-H. Fricke
Atmos. Chem. Phys., 11, 8471–8487, https://doi.org/10.5194/acp-11-8471-2011,https://doi.org/10.5194/acp-11-8471-2011, 2011
12 Jul 2011
Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005
W. Feng, M. P. Chipperfield, S. Davies, G. W. Mann, K. S. Carslaw, S. Dhomse, L. Harvey, C. Randall, and M. L. Santee
Atmos. Chem. Phys., 11, 6559–6573, https://doi.org/10.5194/acp-11-6559-2011,https://doi.org/10.5194/acp-11-6559-2011, 2011
01 Jun 2011
Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
S. Kremser, R. Schofield, G. E. Bodeker, B. J. Connor, M. Rex, J. Barret, T. Mooney, R. J. Salawitch, T. Canty, K. Frieler, M. P. Chipperfield, U. Langematz, and W. Feng
Atmos. Chem. Phys., 11, 5183–5193, https://doi.org/10.5194/acp-11-5183-2011,https://doi.org/10.5194/acp-11-5183-2011, 2011
10 Mar 2011
The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective
M. C. Pitts, L. R. Poole, A. Dörnbrack, and L. W. Thomason
Atmos. Chem. Phys., 11, 2161–2177, https://doi.org/10.5194/acp-11-2161-2011,https://doi.org/10.5194/acp-11-2161-2011, 2011
CC BY 4.0