Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 9, 9001-9026, 2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
27 Nov 2009
Evaluation of black carbon estimations in global aerosol models
D. Koch1,2, M. Schulz3, S. Kinne4, C. McNaughton10, J. R. Spackman9, Y. Balkanski3, S. Bauer1,2, T. Berntsen13, T. C. Bond6, O. Boucher14, M. Chin15, A. Clarke10, N. De Luca24, F. Dentener16, T. Diehl17, O. Dubovik14, R. Easter18, D. W. Fahey9, J. Feichter4, D. Fillmore22, S. Freitag10, S. Ghan18, P. Ginoux19, S. Gong20, L. Horowitz19, T. Iversen13,27, A. Kirkevåg27, Z. Klimont7, Y. Kondo11, M. Krol12, X. Liu18,23, R. Miller2, V. Montanaro24, N. Moteki11, G. Myhre13,28, J. E. Penner23, J. Perlwitz1,2, G. Pitari24, S. Reddy14, L. Sahu11, H. Sakamoto11, G. Schuster5, J. P. Schwarz9, Ø. Seland27, P. Stier25, N. Takegawa11, T. Takemura26, C. Textor3, J. A. van Aardenne8, and Y. Zhao21 1Columbia University, New York, NY, USA
3Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France
4Max-Planck-Institut fur Meteorologie, Hamburg, Germany
5NASA Langley Research Center, Hampton, Virginia, USA
6University of Illinois at Urbana-Champaign, Urbana, IL, USA
7International Institute for Applied Systems Analysis, Laxenburg, Austria
8European Commission, Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy
9NOAA Earth System Research Laboratory, Chemical Sciences Division and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
10University of Hawaii at Manoa, Honolulu, Hawaii, USA
11RCAST, University of Tokyo, Japan
12Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands
13University of Oslo, Oslo, Norway
14Universite des Sciences et Technologies de Lille, CNRS, Villeneuve d'Ascq, France
15NASA Goddard Space Flight Center, Greenbelt, MD, USA
16EC, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
17University of Maryland Baltimore County, Baltimore, Maryland, USA
18Pacific Northwest National Laboratory, Richland, USA
19NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
20ARQM Meteorological Service Canada, Toronto, Canada
21University of California – Davis, CA, USA
22NCAR, Boulder, CO, USA
23University of Michigan, Ann Arbor, MI, USA
24Universita degli Studi L'Aquila, Italy
25Atmospheric, Oceanic and Planetary Physics, University of Oxford, UK
26Kyushu University, Fukuoka, Japan
27Norwegian Meteorological Institute, Oslo, Norway
28Center for International Climate and Environmental Research – Oslo (CICERO) Oslo, Norway
Abstract. We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.
Please read the corrigendum first before accessing the article.

Citation: Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009, 2009.
Publications Copernicus