
Polyphemus 1.1
User’s Guide

CEREA – ENPC / EDF R&D
Meryem Ahmed de Biasi, Vivien Mallet,

Irène Korsakissok, Édouard Debry, Lin Wu

http://www.enpc.fr/cerea/polyphemus/

polyphemus@cerea.enpc.fr

2

Contents

1 Introduction and Installation 9

1.1 Polyphemus Overview . 9

1.2 Requirements . 11

1.3 Installation . 12

1.3.1 Main instructions . 12

1.3.2 AtmoPy . 13

1.3.3 Newran . 13

1.3.4 Fortran Subroutines . 14

2 Using Polyphemus 15

2.1 Remark . 15

2.2 Configuration Files . 15

2.2.1 Definitions . 15

2.2.2 Flexibility . 15

2.2.3 Comments . 17

2.2.4 Markups . 17

2.2.5 Sections . 18

2.2.6 Multiple Files . 18

2.2.7 Dates . 19

2.2.8 Booleans . 19

2.3 Running Programs . 19

2.3.1 Compiling Programs . 19

2.3.2 Running a Program . 19

2.3.3 Sharing Configuration . 20

2.3.4 Notes about Models . 21

2.4 Useful Tools . 23

2.4.1 Information about Binary Files . 23

2.4.2 Differences between Two Binary Files . 23

2.4.3 MM5 Files . 24

2.4.4 Script call dates . 28

2.4.5 Other Utilities . 29

2.5 Setting Up a Simulation . 29

2.5.1 Suggested Directory Tree . 29

2.5.2 Roadmaps . 30

2.5.3 Mandatory Data in Preprocessing . 31

2.5.4 Mandatory Data for Models . 33

2.5.5 Models / Modules Compatibilities . 34

2.5.6 Checking Results . 35

3

4 CONTENTS

3 Preprocessing 37

3.1 Remark . 37

3.2 Introduction . 37

3.2.1 Running Preprocessing Programs . 37

3.2.2 Configuration . 38

3.2.3 Dates . 39

3.2.4 Data Files . 40

3.3 Ground Data . 40

3.3.1 Land Use Cover – GLCF: luc-glcf . 40

3.3.2 Land Use Cover – USGS: luc-usgs . 41

3.3.3 Conversions: luc-convert . 43

3.3.4 Roughness: roughness . 44

3.3.5 LUC for emissions: extract-glcf . 44

3.4 Meteorological Fields . 45

3.4.1 Program meteo . 45

3.4.2 Program attenuation . 47

3.4.3 Program Kz . 47

3.4.4 Program Kz TM . 48

3.4.5 Program MM5-meteo . 49

3.4.6 Program MM5-meteo-castor . 51

3.5 Deposition Velocities . 53

3.5.1 Program dep . 53

3.5.2 Program dep-emberson . 55

3.6 Emissions . 56

3.6.1 Mapping Two Vertical Distributions: distribution 56

3.6.2 Anthropogenic Emissions (EMEP): emissions 56

3.6.3 Biogenic Emissions for Polair3D Models: bio 59

3.6.4 Biogenic Emissions for Castor Models: bio-castor 60

3.6.5 Sea Salt Emissions: sea-salt . 60

3.7 Initial Conditions: ic . 61

3.8 Boundary Conditions . 62

3.8.1 Boundary Conditions for Gaseous Species: bc 62

3.8.2 Boundary Conditions for Aerosol Species: bc-gocart 63

3.9 Preprocessing for Gaussian Models . 67

3.9.1 Program discretization . 67

3.9.2 Programs gaussian-deposition and gaussian-deposition aer 68

4 Drivers 77

4.1 BaseDriver . 77

4.2 PlumeDriver . 77

4.3 PuffDriver . 77

4.4 StationaryDriver . 78

4.5 MonteCarloDriver . 78

4.6 PlumeInGridDriver . 78

4.7 Data Assimilation Drivers . 79

4.7.1 AssimilationDriver . 79

4.7.2 OptimalInterpolationDriver . 80

4.7.3 EnKFDriver . 80

4.7.4 RRSQRTDriver . 81

CONTENTS 5

4.7.5 FourDimVarDriver . 81

4.8 Drivers for the verification of adjoint coding . 82

4.8.1 AdjointDriver . 82

4.8.2 GradientDriver . 83

4.8.3 Gradient4DVarDriver . 83

4.9 Output Savers . 83

4.9.1 BaseOutputSaver . 83

4.9.2 SaverUnitDomain and SaverUnitDomain aer 84

4.9.3 SaverUnitSubdomain and SaverUnitSubdomain aer 85

4.9.4 SaverUnitDomain assimilation . 85

4.9.5 SaverUnitDomain prediction . 85

4.9.6 SaverUnitNesting and SaverUnitNesting aer 86

4.9.7 SaverUnitPoint and SaverUnitPoint aer 86

4.9.8 SaverUnitWetDeposition and SaverUnitDryDeposition 88

4.9.9 SaverUnitWetDeposition aer and SaverUnitDryDeposition aer 88

4.9.10 SaverUnitBackup and SaverUnitBackup aer 89

4.10 Observation Managers . 90

4.10.1 GroundObservationManager . 90

4.10.2 SimObservationManager . 90

4.11 Perturbation Manager . 91

5 Models 93

5.1 GaussianPlume . 93

5.1.1 Configuration File: plume.cfg . 93

5.1.2 Source Description: plume-source.dat 94

5.1.3 Vertical Levels: plume-level.dat . 95

5.1.4 Species: gaussian-species.dat . 95

5.1.5 Meteorological data file: gaussian-meteo.dat 96

5.2 GaussianPlume aer . 97

5.2.1 Configuration File: plume aer.cfg . 98

5.2.2 Source Description: plume-source aer.dat 98

5.2.3 Vertical Levels: plume-level.dat . 98

5.2.4 Species: gaussian-species aer.dat . 98

5.2.5 Diameters: diameter.dat . 98

5.2.6 Meteorological data: gaussian-meteo.dat 98

5.3 GaussianPuff . 98

5.3.1 Configuration File: puff.cfg . 98

5.3.2 Puff Description: puff.dat . 99

5.3.3 Vertical Levels, Species and Meteorological data 100

5.4 GaussianPuff aer . 100

5.4.1 Configuration File: puff aer.cfg . 100

5.4.2 Source Description: puff aer.dat . 100

5.4.3 Vertical Levels, Species, Meteo and Diameters 100

5.5 Polair3DTransport . 100

5.5.1 Main Configuration File: polair3d.cfg 101

5.5.2 Data Description: polair3d-data.cfg 103

5.5.3 Vertical Levels and Species . 106

5.6 Polair3DChemistry . 107

5.6.1 Main Configuration File: polair3d.cfg 107

6 CONTENTS

5.6.2 Data Description: polair3d-data.cfg 107

5.6.3 Vertical Levels and Species . 108

5.7 Polair3DAerosol . 108

5.7.1 Main Configuration File: polair3d.cfg 108

5.7.2 Data Description: polair3d-data.cfg 109

5.7.3 Vertical Levels and Species . 110

5.8 Polair3DChemistryAssimConc . 110

5.9 CastorTransport . 111

5.9.1 Main Configuration File: castor.cfg . 111

5.9.2 Data Description: castor-data.cfg . 111

5.9.3 Vertical Levels and Species . 112

5.10 CastorChemistry . 112

5.10.1 Main Configuration File: castor.cfg . 112

5.10.2 Data Description and Species . 112

5.10.3 Chemistry Files . 113

5.11 PlumeInGridDriver . 113

6 Modules 115

6.1 Transport modules . 115

6.1.1 AdvectionDST3 . 115

6.1.2 SplitAdvectionDST3 . 115

6.1.3 GlobalAdvectionDST3 . 115

6.1.4 DiffusionROS2 . 115

6.1.5 GlobalDiffusionROS2 . 115

6.1.6 TransportPPM . 115

6.2 Chemistry Modules . 116

6.2.1 ChemistryRACM . 116

6.2.2 ChemistryRADM . 116

6.2.3 ChemistryCastor . 116

6.2.4 Decay . 116

6.3 Aerosol Modules . 119

6.3.1 AerosolRACM SIREAM . 119

6.3.2 Decay . 120

7 Postprocessing 121

7.1 Graphical Output . 121

7.1.1 Installation and Python Modules . 121

7.1.2 A Very Short Introduction to Python and Matplotlib 123

7.1.3 Visualization with AtmoPy . 125

7.2 Postprocessing for Gaseous Species . 128

7.2.1 Configuration File . 128

7.2.2 Script evaluation.py . 129

7.2.3 Script disp.py . 129

7.3 Liquid water content diagnosis . 130

7.3.1 Configuration File: water plume.cfg . 130

7.4 Aerosol Postprocessing . 130

7.4.1 Configuration File . 130

7.4.2 Script init aerosol.py . 131

7.4.3 Script graph aerosol.py . 131

CONTENTS 7

A Polyphemus Eulerian Test-Case 133
A.1 Preparing the Test-Case . 133
A.2 Modifying the General Configuration File . 134
A.3 Computing Ground Data . 134

A.3.1 Land Use Cover . 134
A.3.2 Roughness . 135

A.4 Computing Meteorological Data . 135
A.5 Launching the Simulation . 137

A.5.1 Modifying the Configuration File . 137
A.5.2 Modifying the Data File . 137
A.5.3 Modifying Saver File . 137
A.5.4 Simulation . 137

A.6 Visualizing Results . 138
A.6.1 Modifying Configuration File . 138
A.6.2 Using IPython . 138

B Polyphemus Gaussian Test-Case 141
B.1 Preprocessing . 141
B.2 Discretization . 142
B.3 Simulations . 142

B.3.1 Plume . 142
B.3.2 Puff with Aerosol Species . 143
B.3.3 Puff with Line Source . 144

B.4 Result Visualization . 145
B.4.1 Gaussian Plume . 145
B.4.2 Gaussian Puff with Aerosol Species . 146
B.4.3 Gaussian Puff with Line Source . 146

8 CONTENTS

Chapter 1

Introduction and Installation

1.1 Polyphemus Overview

Polyphemus [Mallet et al., 2007] is an air-quality modeling system built to manage:

- several scales: local, regional and continental scales;

- many pollutants: from non-reactive species to particulate matter;

- several chemistry-transport models;

- a bunch of advanced methods in data assimilation and ensemble forecasting;

- model integration.

Further details are available in:
Mallet, V., Quélo, D., Sportisse, B., Ahmed de Biasi, M., Debry, É., Korsakissok, I., Wu, L.,
Roustan, Y., Sartelet, K., Tombette, M., and Foudhil, H. (2007). Technical Note: The air qual-
ity modeling system Polyphemus. Atmospheric Chemistry and Physics Discussions, 7(3):6,459–
6,486
This is the main reference for Polyphemus. Please cite it if you refer to Polyphemus in a publi-
cation, a talk or so.

Polyphemus is made of:

- data processing abilities (available in libraries);

- a library for physical parameterizations (library AtmoData);

- programs to compute input data to chemistry-transport models;

- chemistry-transport models;

- drivers, that is, object-oriented codes responsible for driving models in order to perform,
for instance, simulations and data assimilation;

- programs to analyze and display output concentrations (primarily based on the library
AtmoPy).

Its flowchart is shown in Figure 1.1, in which three steps may be identified: (1) preprocess-
ing (interpolations, physical parameterizations), (2) model computations (possibly with data
assimilation or any other method implemented in a driver), (3) postprocessing (comparisons to
measurements, statistics, visualization).

9

10 CHAPTER 1. INTRODUCTION AND INSTALLATION

Computes physical fields

Numerical
integration
(Polair3D)

D R I V E R

Files Input data processing

Data processing libraries
(AtmoData, SeldonData, ...)

Libraries with physical
parameterizations

(AtmoData)

I
n
p
u
t

O
u
t
p
u
t

Physics

Files

Polyphemus

Statistics
(AtmoPy)

Database

Figure 1.1: Polyphemus flowchart (preprocessing, model computations, postprocessing).

As a consequence, Polyphemus code is organized with the following directories tree:

preprocessing

bc: boundary conditions (Mozart 2, Gocart, INCA);

bio: biogenic emissions;

dep: deposition velocities;

emissions: pollutant emissions (EMEP);

ground: ground data (land use cover, roughness);

ic: initial conditions (Mozart 2);

meteo: meteorological data (ECMWF and MM5, including cloud attenuation and
vertical diffusion);

driver: forward simulations, data assimilation;

example: a series of examples of configuration files for several applications;

observation: observation managers for data assimilation (ground observations and
simulated observations);

optimization: optimization algorithms;

output saver: modules to save the results of a simulation;

perturbation: management of model perturbations (Monte Carlo);

postprocessing: comparisons to measurements;

water plume: liquid water diagnosis in a plume;

include

Talos: C++ library to manage configuration files (used everywhere in Polyphemus),
dates and string processing;

SeldonData: C++ library to perform data processing (interpolations, input/output
operations);

1.2. REQUIREMENTS 11

AtmoData: C++ and Fortran library for physical parameterizations and atmospheric
data processing;

atmopy: AtmoPy is a Python library for statistical analysis and visualization;

common: functions used to parse and manage the arguments of preprocessing pro-
grams;

models: chemistry-transport models to be used by the drivers;

modules

common: a base module from which transport and chemistry modules derive;

transport: numerical schemes for advection and diffusion;

chemistry: chemical mechanisms;

aerosol: chemical mechanisms for aerosol species;

utils: useful tools, mostly to get information on binary files.

Polyphemus is an open source software distributed under the GNU General Public License.
It is available at http://www.enpc.fr/cerea/polyphemus/. Polyphemus development and sup-
port team can be contacted at polyphemus@cerea.enpc.fr.

1.2 Requirements

Polyphemus is designed to run under Unix or Linux-based systems. It should be able to run
under Windows. AtmoPy has been tested under Windows and the Eulerian model Polair3D has
been compiled with Microsoft Visual Studio.NET 2003. There is no obvious reason why other
parts of Polyphemus should not work under Windows.

Polyphemus is based on three computer languages: C++, Fortran 77 and Python. There
are also a very few lines of C.

Supported C++ compilers are GNU GCC (G++) 3.2, 3.3, 3.4, 4.0 and 4.1. GNU GCC
2.x series is too old to compile Polyphemus. Intel C++ compiler (ICC, versions 7.1 and 8.0)
should work. Any other decent C++ compiler (compliant with the standard) should compile
Polyphemus. If not, please report to polyphemus@cerea.enpc.fr.

Corresponding Fortran compilers are acceptable: GNU G77 3.2, 3.3 and 3.4, GNU GFortran
4.0 and 4.1 (take care: GFortran is rather slow according to our tests), and Intel Fortran
compilers IFC 7.1 and IFORT 8.0.

Note for GCC users: Please note that the Fortran compiler has changed between versions
3.x and versions 4.x of GCC. If you use G++ 4.x, please use GFortran to compile Polyphemus
Fortran programs, unless you know what you are doing. Similarly, if you use G++ 3.x, please
use G77.

Python version 2.3 and higher are supported.

With regard to software requirements, below is a list of possible requirements (depending on
the programs to be run):

- the C++ library Blitz++ (http://www.oonumerics.org/blitz/): versions 0.6, 0.7, 0.8
and 0.9 are supported. Note that your compiler may exclude a few versions.

- Blas/Lapack (compiled libraries): any recent version.

- NewRan: C++ library for generation of random numbers, from version 2.0.

12 CHAPTER 1. INTRODUCTION AND INSTALLATION

- NetCDF (compiled libraries and headers): C++ library, any version from series 3.x should
work.

- NumPy: any recent version. Make sure that your versions of NumPy and Matplotlib (see
below) are compatible.

- Matplotlib: any recent version and corresponding pylab version (usually, pylab is included
in Matplotlib package). It is recommended to install the corresponding version of Basemap
in order to benefit from AtmoPy map-visualizations. Basemap is a toolkit available on
Matplotlib website (http://matplotlib.sourceforge.net/), but usually not included
in Matplotlib package.

- SciPy: any recent version.

All of them are open source software. Requirements are shown in Table 1.1.
NewRan is not included in Table 1.1 because it is only needed if one performs data assimi-

lation.

Table 1.1: Polyphemus requirements.
Blitz++ Blas/Lapack NetCDF NumPy Matplotlib SciPy

driver X X

include

/atmopy X X X

preprocessing

/bc X X

/bio X

/dep X

/emissions X

/ground X

/ic X X

/meteo X

postprocessing X X X

/water plume X

1.3 Installation

1.3.1 Main instructions

As soon as libraries and compilers are available, Polyphemus is almost installed. First, extract
Polyphemus sources to a given directory. Polyphemus is usually distributed in a .tar, .tgz,
.tar.gz or .tar.bz2 file. These files are extracted with one of these commands:

tar -xvf Polyphemus.tar

tar -zxvf Polyphemus.tgz

tar -zxvf Polyphemus.tar.gz

tar -jxvf Polyphemus.tar.bz2

Polyphemus programs must be compiled by the user when needed. Makefiles (called makefile)
are provided so that program compilation should be easy. Depending on your compilers and
maybe the paths to the libraries, you might need to slightly modify the makefiles.

Then, one may compile the program meteo.cpp in this way:

1.3. INSTALLATION 13

cd Polyphemus/preprocessing/meteo

make meteo

Then the program meteo is compiled and can be run. Launch make in order to compile all
programs in a given directory. In directory driver/, you may use scons instead of make if you
are familiar with SCons†1.

1.3.2 AtmoPy

A special step is required with the Python library AtmoPy. This library makes calls to a C++
program in order to parse configuration files. Follow the steps below to have AtmoPy fully
installed:

cd Polyphemus/include/atmopy/talos

g++ -I../../Talos -o extract_configuration extract_configuration.cpp

You may replace g++ with any supported compiler (see Section 1.2).

1.3.3 Newran

The library Newran is required with Kalman algorithms (RRSQRT and ensemble) to generate
random numbers. It should be installed in include/newran/.

Download Newran from http://www.robertnz.net/download.html (or type “Newran” in
search engine). At the time these lines are written, Newran 3.0 beta is available at http:

//www.robertnz.net/ftp/newran03.tar.gz. The following commands work with Newran 3.0
beta (released 22 April 2006); there may be slight changes with other versions.

Create directory include/newran/, expand Newran in it:

mkdir Polyphemus/include/newran

cd Polyphemus/include/newran

wget http://www.robertnz.net/ftp/newran03.tar.gz

tar -zxvf newran03.tar.gz

If all is fine, you should have a file called include/newran/newran.h. Next, you have to
edit include/newran/include.h and uncomment the line:

//#define use_namespace // define name spaces

That is, remove the first two slashes:

#define use_namespace // define name spaces

Compile the library (here, with GNU C++ compiler):

make -f nr_gnu.mak libnewran.a

This should create include/newran/libnewran.a. To complete the installation, you have
to create a directory where the seed values are stored, for instance:

mkdir ~/.newran

cp fm.txt lgm.txt lgm_mix.txt mother.txt mt19937.txt multwc.txt wh.txt ~/.newran/

Recall the path to your seed directory since this is an entry of a configuration file
(driver/example/assimilation/perturbation.cfg).

†1http://www.scons.org/

14 CHAPTER 1. INTRODUCTION AND INSTALLATION

1.3.4 Fortran Subroutines

Linking a Fortran code with C++ may raise a problem when the name of a Fortran subroutine
contains an underscore. In this case, the subroutine identifier (in the compiled object) may be
named with two underscores at the end, instead of one (as for other Fortran subroutines). This
is a strange convention that appears in G77 (but no more in GFortran which replaces G77).

In Polyphemus there are tests to deal with this. Most of the time the tests will succeed.
But if you use untested compilers or if you mix compilers from different packages, you may have
undefined symbols at link stage, that is, something like:

polair3d.o(.gnu.linkonce.t.[...]

In function ‘Polyphemus::DiffusionROS2<double>[...]

: undefined reference to ‘diff_x_’

In that case, Polyphemus tests have failed, but there is an easy way to fix that. You
need to slightly change the compilation options. In the makefile, add to the compiler flag
(CCFLAGS) the option: -DPOLYPHEMUS SINGLE UNDERSCORE. If this does not work, then add in-
stead -DPOLYPHEMUS DOUBLE UNDERSCORE. If you change compilation options, you are advised
to use make cleanall before compiling so that each part of the code is compiled with the same
options.

If this still does not work, it is likely that your problem is elsewhere. Contact Polyphemus
development team (polyphemus@cerea.enpc.fr) if you need help.

Chapter 2

Using Polyphemus

2.1 Remark

In configurations files, in output logs, and so on, indices start at 0 (as in C++ and Python, not
at 1 as in Fortran).

2.2 Configuration Files

2.2.1 Definitions

All Polyphemus programs rely on flexible configuration files. These configuration files define
simulation domains, input and output paths, options, etc.

Configurations files are text files, preferably with extension .cfg. They primarily contain
fields, that is, entries associated with values provided by the user. In a configuration file, a line
usually reads:

field = value

A practical example is a discretization definition:

x_min = 12.5

Delta_x = 0.5

Nx = 100

The fields x min, Delta x and Nx are associated with proper values specified by the user.

The characters put between a field and its value are delimiters. In the previous example,
the delimiters are blank spaces and equal signs. Delimiters are discarded characters. They may
be put anywhere in a configuration file but they are always ignored. Their aims are to delimit
words (i.e., fields and values) and to make the configuration file clearer.

2.2.2 Flexibility

The fields and values can be introduced in many ways. First, many delimiters are supported:

• blank space (),

• tabulation (),

• line break,

15

16 CHAPTER 2. USING POLYPHEMUS

• equal sign (=),

• colon (:),

• semicolon (;),

• coma (,), and

• vertical bar (|).

For example,

x_min = 12.5

Delta_x = 0.5

Nx = 100

is equivalent to

x_min 12.5

Delta_x == 0.5

Nx: 100

Recall that delimiters can only be used to delimit words, and are discarded otherwise. It
means that a field or a value cannot contain a delimiter. The fact that the colon is a delimiter
may raise a problem under Windows where drives are called C:, D:, . . . In the current version
of Polyphemus, full paths (that is, with the drive name) should not be used under Windows.
If you need a workaround, please contact the Polyphemus teams at polyphemus@cerea.enpc.fr.

Fields and values go by pair, but they can be placed anywhere. In particular, several fields
may be put on a single line:

x_min = 12.5 Delta_x = 0.5 Nx = 100

y_min = -6.2 Delta_y = 1. Ny = 230

The order in which the fields are placed may or may not be important. In most Polyphemus
configuration files, the order does not matter. Then

x_min = 12.5 Delta_x = 0.5 Nx = 100

y_min = -6.2 Delta_y = 1. Ny = 230

is the same as

y_min = -6.2 Delta_y = 1. Ny = 230

Nx = 100 x_min = 12.5 Delta_x = 0.5

Recommandation – Use equal sign ’=’ between a field and its value if the value is a number
and use semi-colon ’:’ if the value is a string. Example:

x_min = 12.5

Output_directory: /home/user/path

2.2. CONFIGURATION FILES 17

2.2.3 Comments

Comment lines may be added. They start with ’#’ or with ’%’:

Path where results are written.

Output_directory: /home/user/path

They may also be put at the end of a line:

Output_directory: /home/user/path # Path where results are written.

Recommandation – Prefer ’#’ for comments, so as to be consistent with Polyphemus default
configuration files.

2.2.4 Markups

In order to avoid duplications in a configuration file, Polyphemus features a markup management.
A markup is denoted with surrounding ’<’ and ’>’, e.g. <path>. A markup is automatically
replaced with its value whenever it is found. Its value should be provided somewhere in the
configuration file with a proper field; for instance, <path> refers to the field path. Here is a
complete example:

Root: /home/user

Input_directory: <Root>/input/

Output_directory: <Root>/output/

means:

Input_directory: /home/user/input/

Output_directory: /home/user/output/

The markup can be used before its value is defined:

Input_directory: <Root>/input/

Output_directory: <Root>/output/

Root: /home/user # After calls to <Root>. This is legal.

Any field may be used as a markup. The user may define any new markup (that is a new
field). Moreover, several markup substitutions can be performed in a single value, and nested
markups are properly handled:

Home: /home/user

Root: <Home>/Polyphemus/work

Number = 7

Input_directory: <Root>/input-<Number>/

is accepted and means:

Input_directory: /home/user/Polyphemus/work/input-7/

Notice that markups may also replace numbers and may be based on preexisting fields:

x_min = 12.5 Delta_x = 0.5 Nx = 100

y_min = <x_min> Delta_y = 1. Ny = <Nx>

18 CHAPTER 2. USING POLYPHEMUS

2.2.5 Sections

Fields and values may be protected inside sections. Assume that two domains are defined, one
for input data and another for output data. Instead of:

x_min_in = 12.5 Delta_x_in = 0.5 Nx_in = 100

x_min_out = 35.8 Delta_x_out = 0.3 Nx_out = 400

one may prefer:

[input]

x_min = 12.5 Delta_x = 0.5 Nx = 100

[output]

x_min = 35.8 Delta_x = 0.3 Nx = 400

Conflicts are avoided and the syntax is clear. This is why most Polyphemus configuration files
have sections.

Sections are enclosed by square brackets (’[’ and ’]’).

Markups are not bound to any section.

Recommandation – Put two blank lines before each section and one blank line after:

(blank line)

(blank line)

[input]

(blank line)

x_min = 12.5 Delta_x = 0.5 Nx = 100

[output]

x_min = 12.5 Delta_x = 0.5 Nx = 100

2.2.6 Multiple Files

Several Polyphemus programs accept two configuration files as input. Providing two config-
uration files is then equivalent to providing a single configuration file that would contain all
the lines of both files. This is useful to let several programs share a same configuration base.
For instance, the simulation domain (whose description is needed by most programs) is usually
defined in a configuration file that is provided to every program, in addition to a file dedicated
to the specific configuration of the program.

For instance:

./emissions general.cfg emissions.cfg 20010506

launches the program emissions with two configuration files as input: (1) the configuration file
general.cfg shared with other programs and notably defining the domain description, (2) a
specific configuration file, emissions.cfg, that includes options for emission generation.

Markups defined in one configuration file can be used in the other file. Note however that
each section must be defined in one file only.

2.3. RUNNING PROGRAMS 19

2.2.7 Dates

Date formats are:

YYYY # Year.

YYYY-MM # With the month.

YYYY-MM-DD # With the day.

YYYY-MM-DD_HH # With the hour.

YYYY-MM-DD_HH-II # With the minute.

YYYY-MM-DD_HH-II-SS # With the second.

Months range from 01 to 12. Days range from 01 to 31. Hours range from 00 to 23. Minutes
and seconds range from 00 to 59.

If the month is not specified (format YYYY), then the month is set to 01 (January). If the
day is not specified (formats YYYY and YYYY-MM), it is set to 01 (first day of the month). If the
hour, the minute or the second is not specified, it is set to zero (00).

Hyphens and underscores may be replaced with any character that is neither a delimiter (see
Section 2.2.2) nor a cipher. They can also be removed. Examples:

19960413

1996-04-13_20h30

1996/04/13@2030

Recommandation – Use hyphens around the month and around minutes. Use an underscore
between the day and the hour (YYYY-MM-DD HH-II-SS).

2.2.8 Booleans

Booleans are supported in configuration files and can be specified in any of the following ways:

true t yes y

false f no n

This is case unsensitive: e.g., True or NO are valid.

2.3 Running Programs

2.3.1 Compiling Programs

Along with all programs are provided makefiles, in the same directory. Edit these makefiles to
change the compiler. Main variables are the C++ compiler CC, the Fortran compiler F77, the
linker LINK, and maybe the libraries LIBS and the include paths INCPATH.

2.3.2 Running a Program

Most programs require one or two input configuration files, and sometimes one or two dates
(beginning and end dates, see Section 3.2.3). Most programs provide help when launched without
any input file. Here is an example with the program bio†1:

†1Further details about specific programs are provided in chapter 3.

20 CHAPTER 2. USING POLYPHEMUS

~/Polyphemus/preprocessing/bio/> ./bio

Usage:

./bio [main configuration file] [secondary config file] [first date] [second date/interval]

./bio [main configuration file] [first date] [second date/interval]

./bio [main configuration file] [secondary config file] [first date]

./bio [first date] [second date/interval]

./bio [first date]

Arguments:

[main configuration file] (optional): main configuration file. Default: bio.cfg

[secondary configuration file] (optional): secondary configuration file. Default: "".

[first date]: beginning date in any valid format.

[second date]: end date in any valid format.

[interval] (optional): Interval in format NdMh or Nd-Mh or Nd or Mh where N

is the number of days and M the number of hours. Default: 1d.

Note:

The end date, whether it is given directly or computed by adding the time

interval to the beginning date, is always considered as excluded.

Program bio takes from one to four arguments. Below are four possible calls:

./bio 2001-04-22

./bio bio.cfg 2001-04-22

./bio bio.cfg 2001-01-22 2001-04-23

./bio ../general.cfg bio.cfg 2001-04-22

The first three calls are equivalent. The fourth one involves two configuration files. The
program bio behaves as if these two configuration files were merged. It means that the fields
required by the program may be put in any of these two files. Markups defined in one file can
be expanded in the other file. The only constraint is that each section should appear in a single
file only.

2.3.3 Sharing Configuration

The command line:

./bio ../general.cfg bio.cfg 2001-04-22 1d

with the two configuration files general.cfg and bio.cfg, is the advocated line. The
configuration file general.cfg gathers information that may be needed by several programs in
the preprocessing directory (meteo, attenuation, luc-usgs, etc.). Such a configuration file
is provided with Polyphemus/preprocessing/general.cfg:

[general]

Home: /u/cergrene/0/bordas

Directory_computed_fields: <Home>/B/data

Directory_ground_data: <Directory_computed_fields>/ground

Programs: <Home>/codes/Polyphemus-HEAD

2.3. RUNNING PROGRAMS 21

[domain]

Date: 2001-01-02_00-00-00

Delta_t = 3.0

x_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Nz = 5

Vertical_levels: <Programs>/levels.dat

The simulation domain and the simulation dates are defined. In addition, markups
(Directory computed fields, Directory ground data and Programs) are introduced and may
be referred by other configuration files such as meteo.cfg.

Actually most configuration files (meteo.cfg, luc-usgs.cfg, emissions.cfg, etc.) pro-
vided in Polyphemus, along with the programs, are examples that refer to the markups defined
in general.cfg. Essentially three markups are defined in general.cfg:

• Directory computed fields: where output results (i.e., fields computed by preprocessing
programs) are stored.

• Directory ground data: where ground data (land use cover, roughness) is stored.

• Programs: path to Polyphemus preprocessing directory.

Polyphemus configuration files are written so that mainly changes in general.cfg should be
needed to perform a reference simulation. In general.cfg, one changes the paths (markups) to
the preprocessing programs (Programs) and to the output results (Directory computed fields

and Directory ground data), and one chooses its simulation domain. Other configuration files
provide paths to input data (meteorological files, emissions data, etc.) and fine options.

2.3.4 Notes about Models

To launch a simulation you have to compile and execute a C++ program which differs from
preprocessing programs. After preprocessing steps, the simulation is made of a driver (on top
of the model itself), a model and its modules (if any). See Section 1.1 for a short description
of the flowchart. The program of the simulation looks like driver/polair3d.cpp: it is a short
C++ code that declares the driver, the model and the modules.

You may have to modify this program in case you change the model, the driver or a module.
In that case, duplicate driver/polair3d.cpp (or another example) and modify it according to
the notes below. Actually it is likely that the model/driver combination is already in use in one
of the examples: have a look in driver/*.cpp.

First determine which model you need, depending on your simulation target:

• for a passive simulation: Polair3DTransport or CastorTransport;

• for a simulation with chemistry for gaseous species: Polair3DChemistry or CastorChemistry;

• for a simulation with aerosol species: Polair3DAerosol;

• for a simulation with gaseous species and data assimilation: Polair3DChemistryAssimConc;

• for a simulation at local scale using an Eulerian model: one of Polair3D models with driver
StationaryDriver;

22 CHAPTER 2. USING POLYPHEMUS

• for a simulation with a plume Gaussian model: GaussianPlume, or GaussianPlume aer if
there are aerosol species;

• for a non-stationary simulation at local scale with a Gaussian model: GaussianPuff, or
GaussianPuff aer if there are aerosol species;

• for a simulation with point sources, you can use the driver PlumeInGridDriver as a model,
in order to improve the way the dispersion of the pollutants inside a cell is modelled.

To set the model, just modify the definition of ClassModel:

typedef MyModel<Argument(s)> ClassModel;

For instance:

typedef Polair3DAerosol<real, AdvectionDST3<real>,

DiffusionROS2<real>, Decay<real> > ClassModel;

If you change a model, you may also change the modules (a model may need less modules
or no module at all: remove them is necessary). The modules are all (template) arguments of
the model (AdvectionDST3<real>, DiffusionROS2<real> and Decay<real>, in the previous
example), except for real that should not be changed. The order in which the modules are
provided matters: it is always advection, diffusion and chemistry, or transport (single module)
and chemistry. See Section 2.5.5 for the modules you can use with the model you chose.

Then, in your main C++ program, declare the right driver. You may replace BaseDriver

with a new driver at this line (in driver/polair3d.cpp):

BaseDriver<real, ClassModel, BaseOutputSaver<real, ClassModel> >

Driver(argv[1]);

Finally make sure to include all models, modules, drivers and output savers you use (at
the beginning of the file – statements #include "...cxx"). The makefile may need changes
too if the module uses Fortran functions. In particular, chemistry modules ChemistryRADM and
ChemistryRACM need Fortran routines, make sure that they are included in SRC77:

• for ChemistryRACM: LU decompose.f, LU solve.f, angzen.edf.f, chem.f, dratedc.f,
fexchem.f, jacdchemdc.f, kinetic.f, rates.f, roschem.f and solvlin.f (in directory
include/modules/chemistry/ChemistryRACM).

• for ChemistryRADM: LU decompose.f, LU solve.f, angzen.edf.f, chem.f, fex-
chem.f, jacdchemdc.f, kinetic.f, roschem.f and solvlin.f (in directory
include/modules/chemistry/ChemistryRADM).

Aerosol module AerosolRACM SIREAM also needs Fortran routines, but a specific makefile is pro-
vided for simulations using this module.

If you are not confident with your own changes, have a look at the examples: it is likely that
you find a close combination there. In case you try an unusual combination, you may contact
polyphemus@cerea.enpc.fr.

The directory named driver/example provides examples of configuration and data files to
use with the programs. These examples should be launched in directory driver. Their outputs
will then be stored in driver/results, so make sure that this directory exists before you start
the simulation (indeed Polyphemus programs do not create directories before saving results).

2.4. USEFUL TOOLS 23

2.4 Useful Tools

A few useful tools are provided in directory Polyphemus/utils. Here is a brief explanation of
their aim and their use.

2.4.1 Information about Binary Files

Two programs provided in Polyphemus/utils are meant to provide information about the
content of one or several binary files. It is highly recommended to use these programs to check
the output files of preprocessing programs and drivers/models (e.g. in Section 2.5.6).

These two programs perform the same thing but on binary files with different floating pre-
cision:

• get info float gives the minimum, maximum and mean of binary files in single precision.

• get info double gives the minimum, maximum and mean of binary files in double preci-
sion.

It is assumed that the binary file to be analyzed by get info float or get info double

contains only floating point numbers. No extra data such as headers should be in the file. Out-
put binary files from preprocessing programs and from drivers/models satisfy this condition and
can be properly read by get info float or get info double. Note that Polyphemus programs
usually generate single precision files: it is very likely that one only uses get info float.

Using get info float or get info double is straightforward:

$ get_info_float Temperature.bin

Minimum: 257.621

Maximum: 300.882

Mean: 282.262

$ get_info_float Temperature.bin Pressure.bin

-- File "Temperature.bin"

Minimum: 257.621

Maximum: 300.882

Mean: 282.262

-- File "Pressure.bin"

Minimum: 56369.2

Maximum: 102496

Mean: 87544.1

2.4.2 Differences between Two Binary Files

There are two different types of programs to compute statistics about the differences between
two files:

• get diff precision where precision is float or double. They return statistics about
the difference between two files. As for get info precision, the files should only contain
floating point numbers.

24 CHAPTER 2. USING POLYPHEMUS

• get partial diff precision where precision is float or double. They return statis-
tics about the difference between two files. If these two files have the same size,
get partial diff precision does the same as get diff precision. If the files do not
have the same size, only the first values (as much as possible) are compared.

Here is an example with get diff float:

~Polyphemus/driver/results> ../../utils/get_diff_float O3.bin O3-other.bin

File #0 File #1

Minima: 0.0145559 0.0181665

Maxima: 136.795 175.123

Means: 71.578 65.4088

Standard dev.: 26.958 28.643

Difference

Minimum: -57.324

Maximum: 66.9219

Mean: 6.16919

Standard dev.: 14.4999

Correlation between files #0 and #1: 0.865696

2.4.3 MM5 Files

It can be useful to get information from MM5 files, in particular to modify the configuration file
MM5-meteo.cfg (see Section 3.4.5). To do so, two programs are provided:

• MM5 var list gives a list of all variables stored in a MM5 file. It also gives miscellaneous
information about the file. Information provided can be needed in preprocessing step
(program MM5-meteo – Section 3.4.5): number of space steps, time step and projection
type.

• get info MM5 gives the minimum, maximum, mean and standard deviation of a variable
stored in a MM5 file (use program MM5 var list to know what variables are stored in the
file).

For instance, the output of MM5 var list for the file MM5-2004-08-09 used in the Eulerian
test case (see Section A) is:

Metadata (-999 means unknown):

OUTPUT FROM PROGRAM MM5 V3 : 11

TERRAIN VERSION 3 MM5 SYSTEM FORMAT EDITION NUMBER : 1

TERRAIN PROGRAM VERSION NUMBER : 6

TERRAIN PROGRAM MINOR REVISION NUMBER : 0

COARSE DOMAIN GRID DIMENSION IN I (N-S) DIRECTION : 76

COARSE DOMAIN GRID DIMENSION IN J (E-W) DIRECTION : 86

MAP PROJECTION. 1: LAMBERT CONFORMAL, 2: POLAR STEREOGRAPHIC, 3: MERCATOR : 1

IS COARSE DOMAIN EXPANDED?, 1: YES, 0: NO : 0

EXPANDED COARSE DOMAIN GRID DIMENSION IN I DIRECTION : 76

EXPANDED COARSE DOMAIN GRID DIMENSION IN J DIRECTION : 86

2.4. USEFUL TOOLS 25

GRID OFFSET IN I DIR DUE TO COARSE GRID EXPANSION : 0

GRID OFFSET IN J DIR DUE TO COARSE GRID EXPANSION : 0

DOMAIN ID : 1

MOTHER DOMAIN ID : 1

NEST LEVEL (0: COARSE MESH) : 0

DOMAIN GRID DIMENSION IN I DIRECTION : 76

DOMAIN GRID DIMENSION IN J DIRECTION : 86

I LOCATION IN THE MOTHER DOMAIN OF THE DOMAIN POINT (1,1) : 1

J LOCATION IN THE MOTHER DOMAIN OF THE DOMAIN POINT (1,1) : 1

DOMAIN GRID SIZE RATIO WITH RESPECT TO COARSE DOMAIN : 1

: 1

REGRID Version 3 MM5 System Format Edition Number : 2

REGRID Program Version Number : 16

REGRID Program Minor Revision Number : 1

COARSE DOMAIN GRID DISTANCE (m) : 36000

COARSE DOMAIN CENTER LATITUDE (degree) : 47

COARSE DOMAIN CENTER LONGITUDE (degree) : 6

CONE FACTOR : 0.715567

TRUE LATITUDE 1 (degree) : 60

TRUE LATITUDE 2 (degree) : 30

POLE POSITION IN DEGREE LATITUDE : 90

APPROX EXPANSION (m) : 360000

GRID DISTANCE (m) OF THIS DOMAIN : 36000

I LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (1,1) : 1

J LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (1,1) : 1

I LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (IX,JX) : 76

J LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (IX,JX) : 86

TERRAIN DATA RESOLUTION (in degree) : 0.0833333

LANDUSE DATA RESOLUTION (in degree) : 0.0833333

MM5 Version 3 MM5 System Format Edition Number : 1

MM5 Program Version Number : 6

MM5 Program Minor Revision Number : 1

FOUR-DIGIT YEAR OF START TIME : 2004

INTEGER MONTH OF START TIME : 8

DAY OF THE MONTH OF THE START TIME : 9

HOUR OF THE START TIME : 0

MINUTES OF THE START TIME : 0

SECONDS OF THE START TIME : 0

TEN THOUSANDTHS OF A SECOND OF THE START TIME : 0

MKX: NUMBER OF LAYERS IN MM5 OUTPUT : 25

TIMAX: SIMULATION END TIME (MINUTES) : 5760

TISTEP: COARSE-DOMAIN TIME STEP IN SECONDS : 100

TAPFRQ: TIME INTERVAL (MINUTES) THAT DATA WERE SAVED FOR GRIN : 60

Outputs:

Name Dim. 1 2 3 4 Stag. Ord. Units Description

U 3 76 86 25 D YXS m/s U COMPONENT OF

26 CHAPTER 2. USING POLYPHEMUS

HORIZONTAL WIND

V 3 76 86 25 D YXS m/s V COMPONENT OF

HORIZONTAL WIND

T 3 76 86 25 C YXS K TEMPERATURE

Q 3 76 86 25 C YXS kg/kg MIXING RATIO

CLW 3 76 86 25 C YXS kg/kg CLOUD WATER MIXING RATIO

RNW 3 76 86 25 C YXS kg/kg RAIN WATER MIXING RATIO

ICE 3 76 86 25 C YXS kg/kg CLOUD ICE MIXING RATIO

SNOW 3 76 86 25 C YXS kg/kg SNOW MIXING RATIO

GRAUPEL 3 76 86 25 C YXS kg/kg GRAUPEL MIXING RATIO

RAD TEND 3 76 86 25 C YXS K/DAY ATMOSPHERIC RADIATION TENDENCY

W 3 76 86 26 C YXW m/s VERTICAL WIND COMPONENT

PP 3 76 86 25 C YXS Pa PRESSURE PERTURBATION

PSTARCRS 2 76 86 C YX Pa (REFERENCE) SURFACE PRESSURE

MINUS PTOP

GROUND T 2 76 86 C YX K GROUND TEMPERATURE

RAIN CON 2 76 86 C YX cm ACCUMULATED CONVECTIVE

PRECIPITATION

RAIN NON 2 76 86 C YX cm ACCUMULATED NONCONVECTIVE

PRECIPITATION

TERRAIN 2 76 86 C YX m TERRAIN ELEVATION

MAPFACCR 2 76 86 C YX (DIMENSIONLESS) MAP SCALE FACTOR

MAPFACDT 2 76 86 D YX (DIMENSIONLESS) MAP SCALE FACTOR

CORIOLIS 2 76 86 D YX 1/s CORIOLIS PARAMETER

RES TEMP 2 76 86 C YX K INFINITE RESERVOIR SLAB

TEMPERATURE

LATITCRS 2 76 86 C YX DEGREES LATITUDE (SOUTH NEGATIVE)

LONGICRS 2 76 86 C YX DEGREES LONGITUDE (WEST NEGATIVE)

LAND USE 2 76 86 C YX category LANDUSE CATEGORY

TSEASFC 2 76 86 C YX K SEA SURFACE TEMPERATURE

PBL HGT 2 76 86 C YX m PBL HEIGHT

REGIME 2 76 86 C YX (DIMENSIONLESS) PBL REGIME

SHFLUX 2 76 86 C YX W/m^2 SENSIBLE HEAT FLUX

LHFLUX 2 76 86 C YX W/m^2 LATENT HEAT FLUX

UST 2 76 86 C YX m/s FRICTIONAL VELOCITY

SWDOWN 2 76 86 C YX W/m^2 SURFACE DOWNWARD SHORTWAVE

RADIATION

LWDOWN 2 76 86 C YX W/m^2 SURFACE DOWNWARD LONGWAVE

RADIATION

SWOUT 2 76 86 C YX W/m^2 TOP OUTGOING SHORTWAVE

RADIATION

LWOUT 2 76 86 C YX W/m^2 TOP OUTGOING LONGWAVE

RADIATION

SOIL T 1 2 76 86 C YX K SOIL TEMPERATURE IN LAYER 1

SOIL T 2 2 76 86 C YX K SOIL TEMPERATURE IN LAYER 2

SOIL T 3 2 76 86 C YX K SOIL TEMPERATURE IN LAYER 3

SOIL T 4 2 76 86 C YX K SOIL TEMPERATURE IN LAYER 4

SOIL M 1 2 76 86 C YX m^3/m^3 TOTAL SOIL MOIS IN LYR 1 4

SOIL M 2 2 76 86 C YX m^3/m^3 TOTAL SOIL MOIS IN LYR 2 4

2.4. USEFUL TOOLS 27

SOIL M 3 2 76 86 C YX m^3/m^3 TOTAL SOIL MOIS IN LYR 3 4

SOIL M 4 2 76 86 C YX m^3/m^3 TOTAL SOIL MOIS IN LYR 4 4

SOIL W 1 2 76 86 C YX m^3/m^3 SOIL LQD WATER IN LYR 1 4

SOIL W 2 2 76 86 C YX m^3/m^3 SOIL LQD WATER IN LYR 2 4

SOIL W 3 2 76 86 C YX m^3/m^3 SOIL LQD WATER IN LYR 3 4

SOIL W 4 2 76 86 C YX m^3/m^3 SOIL LQD WATER IN LYR 4 4

CANOPYM 2 76 86 C YX m CANOPY MOISTUR E CONTENT

WEASD 2 76 86 C YX mm WATER EQUIVALENT SNOW DEPTH

SNOWH 2 76 86 C YX m PHYSICAL SNOW DEPTH

SNOWCOVR 2 76 86 C YX fraction FRACTIONAL SNOW COVER

ALB 2 76 86 C YX fraction ALBEDO

GRNFLX 2 76 86 C YX W m{-2} GROUND HEAT FLUX

VEGFRC 2 76 86 C YX fraction VEGETATION COVERAGE

SEAICE 2 76 86 C YX (DIMENSIONLESS) SEA ICE FLAG

SFCRNOFF 2 76 86 C YX mm SURFACE RUNOFF

UGDRNOFF 2 76 86 C YX mm UNDERGROUND RUNOFF

T2 2 76 86 C YX K 2-meter Temperature

Q2 2 76 86 C YX kg kg{-1} 2-meter Mixing Ratio

U10 2 76 86 C YX m s{-1} 10-meter U Component

V10 2 76 86 C YX m s{-1} 10-meter V Component

ALBD 2 27 2 CA PERCENT SURFACE ALBEDO

SLMO 2 27 2 CA fraction SURFACE MOISTURE AVAILABILITY

SFEM 2 27 2 CA fraction SURFACE EMISSIVITY AT 9 um

SFZ0 2 27 2 CA cm SURFACE ROUGHNESS LENGTH

THERIN 2 27 2 CA 100*cal cm^-2

K^-1 s^1/2 SURFACE THERMAL INERTIA

SFHC 2 27 2 CA J m^-3 K^-1 SOIL HEAT CAPACITY

SCFX 1 27 CA fraction SNOW COVER EFFECT

SIGMAH 1 25 H S sigma VERTICAL COORDINATE

Total number of time steps read in the file: 97

For each variable is provided:

• its name;

• its number of dimensions;

• its length along dimension 1 (if applicable);

• its length along dimension 2 (if applicable);

• its length along dimension 3 (if applicable);

• its length along dimension 4 (if applicable);

• the position at which the variable is given (Stag.): dot points (D, corner of the grid
squares) or cross points (C, center of the grid squares);

• its dimensions ordering;

• its unit (or (DIMENSIONLESS));

28 CHAPTER 2. USING POLYPHEMUS

• a short description.

Then you can use the program get info MM5 to have statistical data about one of the variables
only. Note that some variables have a blank space in their name so in that case you need to put
the name between quotes to use get info MM5. If the name has no blank spaces, quotes are not
necessary but can be used.

~/TestCase/raw_data/MM5> get_info_MM5 MM5-2004-08-09 ’GROUND T’

Min: 271.911

Max: 327.747

Mean: 294.112

Std. dev.: 6.46779

~/TestCase/raw_data/MM5> get_info_MM5 MM5-2004-08-09 ALB

Min: 0.0738

Max: 0.8

Mean: 0.122658

Std. dev.: 0.0501975

Note that get info MM5 only gives information on one field stored in the MM5 file.

2.4.4 Script call dates

The script call dates allows to call a program (in particular for preprocessing) over several
consecutive days. Launch it without arguments to get help:

~/Polyphemus/utils> ./call_dates

Script "call_dates" calls a program over a range of dates.

Usage:

"call_dates" [program] {arguments} [first date] [second date / number of days]

Arguments:

[program]: program to be launched over the range of dates.

{arguments}: arguments. Any occurence of %D is replaced with the date;

otherwise the date is assumed to be the last argument.

[first date]: first date of the range of dates.

[second date / number of days]: last date of the range of dates

or number of days of this range.

Below is an example:

~/Polyphemus/utils> call_dates echo "Current date:" 20060720 20060722

--

nice time echo Current date: 20060720

Current date: 20060720

0.00user 0.00system 0:00.00elapsed 0%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+176minor)pagefaults 0swaps

2.5. SETTING UP A SIMULATION 29

--

nice time echo Current date: 20060721

Current date: 20060721

0.00user 0.00system 0:00.00elapsed 0%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+177minor)pagefaults 0swaps

--

nice time echo Current date: 20060722

Current date: 20060722

0.00user 0.00system 0:00.00elapsed 200%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+177minor)pagefaults 0swaps

--

For each day, the command that is launched is shown (note that nice time has been prepended)
and its output is displayed below.

2.4.5 Other Utilities

Many other utilities (to be compiled with make – utils/makefile includes all programs) are
provided to manipulate binary and text files. Below are short descriptions of these utilities:

• add float: adds two single-precision binary files;

• add nb float: adds a number to a single-precision binary file;

• double to float: converts a double-precision binary file to a single-precision binary file;

• float to text: converts a single-precision binary file to a text file;

• mult nb float: multiplies a single-precision binary file by a given number;

• reverse: switch from big-endian to little-endian, or vice versa;

• subtraction float: subtracts two single-precision binary files;

• text to float: converts a text file to a single-precision binary file.

To get further help on a program, launch this program without arguments. It will print help
on screen.

2.5 Setting Up a Simulation

This section is a quick overview of how a simulation should be set up. It is not meant to and
cannot replace the chapters about preprocessing, models, modules, . . .

2.5.1 Suggested Directory Tree

It is advocated not to modify Polyphemus code, including the configuration files provided with
it. The whole Polyphemus directory should not be modified (except maybe makefiles). Copy
the configuration files you need in a dedicated directory, modify the new configuration files in
this directory, and run Polyphemus programs from this directory. Your directory tree may look
like:

30 CHAPTER 2. USING POLYPHEMUS

Polyphemus-{version}/driver/

/include/

/postprocessing/

/preprocessing/

/utils/

MyStudy/configuration/

/data/emissions/

/meteo/

/[...]

/results/reference/

/new_emissions/

/[...]

where MyStudy contains Polyphemus configurations files set for the study (configuration with
general.cfg, meteo.cfg, . . . in it), data generated by preprocessing programs (directory data),
and output results from the chemistry-transport model (results, with results from different
runs).

Notice that Polyphemus directory includes the version number (or the date). This is very
useful in order to properly track simulations. In directory MyStudy, you should add a file called
version which should contain Polyphemus version (and maybe the version of other tools).

You may also want to copy configuration files in your output directory. For instance, you
may copy meteo.cfg in directory MyStudy/data/meteo/ so as to know with which configuration
your meteorological data were generated.

2.5.2 Roadmaps

Roadmaps with “Polair3D” Models

In short, the main steps to set up an Eulerian simulation with model Polair3D are:

1. generation of ground data (land use cover, roughness height) – preprocessing/ground;

2. preprocessing of meteorological fields – preprocessing/meteo;

3. other preprocessing steps if relevant (deposition velocities, emissions, . . .);

4. compiling the right combination of model, module(s) and driver (see Sections 2.5.5 and 2.3.4).

Passive tracer Below is a possible sequence of programs to be launched to perform a basic
passive simulation:

preprocessing/ground/luc-glcf

preprocessing/ground/roughness

preprocessing/meteo/MM5-meteo

preprocessing/meteo/Kz_TM

driver/polair3d-transport

Program polair3d-transport is not provided with Polyphemus. It should be built with
Polyphemus components: BaseDriver (driver), Polair3DTransport (model), AdvectionDST3
(module), DiffusionROS2 (module). See Section 2.3.4 for details.

2.5. SETTING UP A SIMULATION 31

Photochemistry Below is a possible sequence of programs to be launched to perform a pho-
tochemistry simulation:

preprocessing/ground/luc-glcf

preprocessing/ground/roughness

preprocessing/meteo/MM5-meteo

preprocessing/meteo/Kz_TM

preprocessing/emissions/emissions

preprocessing/bio/bio

preprocessing/dep/dep

preprocessing/ic/ic

preprocessing/bc/bc

driver/polair3d

Roadmap with “Castor” Models

The roadmap with “Castor” models is very similar to the one with “Polair3D” models except
that raw data and preprocessing programs to modify them are often different.

Photochemistry Below is a possible sequence of programs to be launched to perform a pho-
tochemistry simulation:

preprocessing/ground/ground-castor

preprocessing/meteo/MM5-meteo-castor

preprocessing/emissions/chimere_to_castor

preprocessing/bio/bio-castor

preprocessing/dep/dep-emberson

preprocessing/ic/ic

preprocessing/bc/bc-inca

driver/castor

Roadmaps with Gaussian Models

In short, the main steps to set up a Gaussian simulation are:

1. generation of meteorological data: no program is available to do it, but as only
little information is required this should be quite easy. Examples of meteo-
rological files are provided in driver/example/gaussian/gaussian-meteo.dat and
driver/example/gaussian/gaussian-meteo aer.dat.

2. preprocessing: discretization to generate source files for line emission and gaussian-deposition

or gaussian-deposition aer to compute deposition velocities and scavenging coeffi-
cients(without or with aerosol species respectively). For more details, see Section 3.9

3. compiling the right combination of model (GaussianPlume, GaussianPlume aer, GaussianPuff,
GaussianPuff aer) and driver (PlumeDriver or PuffDriver).

2.5.3 Mandatory Data in Preprocessing

ECMWF Fields

In ECMWF files, it is recommended to have the following fields (with their Grib codes):

32 CHAPTER 2. USING POLYPHEMUS

• Volumetric soil water layer 1 (39),

• Volumetric soil water layer 2 (40),

• Volumetric soil water layer 3 (41),

• Volumetric soil water layer 4 (42),

• Temperature [3D] (130),

• U velocity [3D] (131),

• V velocity [3D] (132),

• Specific humidity [3D] (133),

• Snow depth (141),

• Stratiform precipitation (Large-scale precipitation) [accumulated] (142),

• Convective precipitation [accumulated] (143),

• Snowfall (convective + stratiform) [accumulated] (144),

• Surface sensible heat flux [accumulated] (146),

• Surface latent heat flux [accumulated] (147),

• Logarithm of surface pressure (152),

• Boundary layer height (159),

• Total cloud cover (164),

• 2 meter temperature (167),

• Surface solar radiation downwards [accumulated] (169),

• Surface solar radiation [accumulated] (176),

• East-West surface stress [accumulated] (180),

• North-South surface stress [accumulated] (181),

• Evaporation [accumulated] (182),

• Low cloud cover (186),

• Medium cloud cover (187),

• High cloud cover (188),

• Skin temperature (235),

• Forecast albedo (243),

• Cloud liquid water content [3D] (246),

• Cloud ice water content [3D] (247),

• Cloud cover [3D] (248).

Not all data may be required, depending on the programs you actually run.

2.5. SETTING UP A SIMULATION 33

2.5.4 Mandatory Data for Models

The table below presents all variables needed by various models (and the name under which
they appear in the data configuration files). Note that additional data can be necessary to add
initial conditions, boundary conditions, source terms (volume emissions, surface emissions) or
loss terms (deposition velocities, scavenging). In the table, Gaussian represents any Gaussian
model (GaussianPlume, GaussianPuff, GaussianPlume aer or GaussianPuff aer) as they all
need the same data.

Table 2.1: Mandatory data for each models.

Model Data necessary.

CastorTransport Temperature,
Pressure,
Altitude,
AirDensity,
MeridionalWind
ZonalWind
VerticalDiffusion.

CastorChemistry The same as CastorTransport and
SpecificHumidity,
LiquidWaterContent,
Attenuation.

Polair3DTransport MeridionalWind (for advection),
ZonalWind (for advection),
VerticalDiffusion (for diffusion),
Horizontal diffusion (if Isotropic diffusion is set to
no; this value is given in the main configuration file),
Temperature (if With air density is set to yes or for
microphysical scavenging model),
Pressure (if With air density is set to yes or for micro-
physical scavenging model).

Polair3DChemistry The same as Polair3DTransport and
SpecificHumidity,
Attenuation.

Polair3DChemistryAssimConc The same as Polair3DChemistry.

Polair3DAerosol The same as Polair3DChemistry and
LiquidWaterContent,
SnowHeight.

Gaussian Temperature,
Wind angle,
Wind (wind module),
Inversion height,
Stability.

All data for Eulerian models are outputs of meteorological preprocessing programs:

• meteo, Kz, attenuation (and Kz TM if you use Troen & Mahrt parameterization for ver-
tical diffusion), for models of type “Polair3D” while using raw meteorological data from
ECMWF.

34 CHAPTER 2. USING POLYPHEMUS

• MM5-meteo (and Kz TM if you use Troen & Mahrt parameterization for vertical diffusion)
for models of type “Polair3D” while using raw meteorological data from model MM5;

• MM5-meteo-castor (and Kz TM if you use Troen & Mahrt parameterization for vertical
diffusion) for models of type “Castor” while using raw meteorological data from model
MM5.

2.5.5 Models / Modules Compatibilities

Models of type “Polair3D” require two transport modules (one for advection and one for dif-
fusion), while models of type “Castor” only require one transport module (which deals with
advection and diffusion). This does not mean that a module could not be shared by both
models (although there is no common module in current Polyphemus version).

Table 2.2 and Table 2.3 present a summary of the compatibility between models and modules.
Note that Gaussian models are not included in these tables because they don’t need any module.

Table 2.2: Compatibility between models and transport modules.
AdvectionDST3 DiffusionROS2 TransportPPM

Polair3DTransport X X

Polair3DChemistry X X

Polair3DAerosol X X

Polair3DChemistryAssimConc X X

CastorTransport X

CastorChemistry X

SplitAdvectionDST3 GlobalAdvectionDST3 GlobalDiffusionROS2

Polair3DTransport X X X

Polair3DChemistry X X X

Polair3DAerosol X X X

Polair3DChemistryAssimConc X X X

CastorTransport
CastorChemistry

Table 2.3: Compatibility between models and chemistry modules.
Castor RACM RADM SIREAM Decay

Polair3DChemistry X X X X

Polair3DAerosol X X

Polair3DChemistryAssimConc X X

CastorChemistry X

In Table 2.3, module names are shortened to be displayed on one line: Castor is
actually ChemistryCastor, RACM is ChemistryRACM, RADM is ChemistryRADM, SIREAM is
AerosolRACM SIREAM.

As for drivers, BaseDriver is the simplest and the most used of them. The other drivers
available are:

• StationaryDriver: for local scale Eulerian simulations.

• PlumeDriver: for Gaussian plume model (with or without aerosol species).

2.5. SETTING UP A SIMULATION 35

• PuffDriver: for Gaussian puff model (with or without aerosol species).

• Data assimilation drivers: OptimalInterpolationDriver (optimal interpolation), EnKFDriver
(ensemble Kalman filter), RRSQRTDriver (reduced rank square root filter), FourDimVarDriver
(4D-Var), to be associated with Polair3DAssimConc model.

• Drivers for the verification of adjoint coding in variational assimilation: AdjointDriver,
GradientDriver, Gradient4DVarDriver.

2.5.6 Checking Results

It is highly recommended to check the fields generated by Polyphemus programs: meteorological
fields, deposition velocities, output concentrations, . . .

First you can check the size of the binary files. The results are saved as floating point numbers
with single precision. This means that most results file must be of size 4 × Nt × Nz × Ny × Nx

bytes where Nx and Ny are the space steps along x and y directions respectively, Nz is the
number of vertical levels of the field and Nt is the number of time steps. Note that, Nt is not the
number of time steps of the simulation but the number of time steps for which concentrations
are saved.

Second you should check that the fields have reasonable values using the programs from direc-
tory utils, mainly get info float (see Section 2.4.1). The command line to use get info float

is:

get_info_float results/O3.bin

And the output looks like:

Minimum: 0.0563521

Maximum: 169.219

Mean: 91.3722

36 CHAPTER 2. USING POLYPHEMUS

Chapter 3

Preprocessing

This chapter introduces all preprocessing programs. It details the input files (data files and
configuration files) of every program, and it describes their output files. In Section 3.2, config-
urations and features shared by almost all programs are explained.

3.1 Remark

In the descriptions of preprocessing programs, there are references to functions like
ComputePressure, ComputeAttenuation LWC, etc. These functions are part of AtmoData and
are described in AtmoData scientific documentation [Njomgang et al., 2005].

3.2 Introduction

3.2.1 Running Preprocessing Programs

Most preprocessing programs:

• accept one or two configuration files as arguments;

• process data daily unless specified otherwise (see Section 3.2.3);

• append their results at the end of binary files (if they already exist) or create them. Note
that they cannot create the directory so you have to make sure it exists before launching
a preprocessing program.

For instance, program meteo processes meteorological data over one day. To generate data
from day 2001-05-19 to day 2001-05-21, one should launch:

./meteo ../general.cfg meteo.cfg 2001-05-19

./meteo ../general.cfg meteo.cfg 2001-05-20

./meteo ../general.cfg meteo.cfg 2001-05-21

Another option is to use the script call dates (see Section 2.4.4). In that case, to generate
data from day 2005-05-19 to day 2005-05-21, one should launch:

meteo> ../utils/call_dates ./meteo ../general.cfg meteo.cfg 20050519 20050521

or

meteo> ../utils/call_dates ./meteo ../general.cfg meteo.cfg 20050519 3

37

38 CHAPTER 3. PREPROCESSING

Remember that the results are appended at the end of the output files if they already exist.
If you decide to recompute your fields from the first day, you have to first remove old output
binary files.

In order to know what are the arguments of a program, you may launch it without arguments.
For instance:

emissions> ./emissions

Usage:

./emissions [main configuration file] [secondary configuration file] [date]

./emissions [main configuration file] [date]

./emissions [date]

Arguments:

[main configuration file] (optional): main configuration file. Default: emissions.cfg

[secondary configuration file] (optional): secondary configuration file.

[date]: date in any valid format.

3.2.2 Configuration

Almost all programs require the description of the domain over which computations
should be performed. Since this configuration is shared by many programs, it is put
in a common configuration file called general.cfg. An example of such a file is
Polyphemus/preprocessing/general.cfg, whose content is quoted below:

[general]

Home: /u/cergrene/0/bordas

Directory_computed_fields: <Home>/B/data

Directory_ground_data: <Directory_computed_fields>/ground

Programs: <Home>/codes/Polyphemus-HEAD

[domain]

Date: 2001-01-02

Delta_t = 3.0

x_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Nz = 5

Vertical_levels: <Programs>/levels.dat

Entries in section [general] are markups provided for convenience. See Section 2.3.3 for
further explanations.

3.2. INTRODUCTION 39

The section [domain] contains the domain (in space and time) description.

[domain]

Date The date at which the simulation (of the chemistry-transport model) is
starting. It is also the date at which meteorological data (processed by
Polyphemus – output from programs meteo or MM5-meteo) starts. As a
consequence, any program that needs to read this meteorological data refers
to this date. The date must be in a format described in Section 2.2.7.

Delta t Time step in hour of output meteorological data processed by Polyphemus.
x min Abscissa of the center of the lower-left cell. It is usually in longitude (de-

grees).
Delta x Step length along x, usually in degrees (longitude).
Nx Number of cells along x (integer).
y min Ordinate of the center of the lower-left cell. It is usually in latitude (degrees).
Delta y Step length along y, usually in degrees (latitude).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels interfaces in m.

3.2.3 Dates

Many preprocessing programs require a starting and end date. In that case, the starting date
must always be provided in command line, but there are three possibilities for the end date:

1. provide an end date in any valid format (see Section 2.2.7), e.g.

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_12-00-00 2004-08-11_06-00-00

2. provide a duration in format NdMh for a duration of N days and M hours. Alternatively,
you can put a duration of Mh for M hours or Nd for N days. Valid duration can be, for
instance, 3d5h or 5d or 14h. E.g.

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_12-00-00 1d12h

3. provide no end date nor duration. In that case a duration of one day is used. E.g.

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_12-00-00

Please note that in all three cases the end date is excluded. The advantage of it is that, if
for whatever reason you want to use the preprocessing program several times in a row, you can
use the end date as the starting date for the next time.

Then the number of iterations is computed from the interval between the starting and end
dates and from the time step you provided in the general configuration file.

The first date given in command line is the date at which the preprocessing starts this time.
It might differ from the date given in general.cfg if the preprocessing program is launched
several times in a row, for example because the meteorological data file does not cover the whole
time span of the simulation.

40 CHAPTER 3. PREPROCESSING

3.2.4 Data Files

Polyphemus reads ECMWF Grib files, MM5 files, NetCDF files (for Mozart 2), text files and
binary files. All files generated by Polyphemus are text files or binary files.

Unless specified otherwise, all binary files store single-precision floating-point numbers. They
do not contain any header. Each binary file only stores the values of a single field. Four-
dimensional fields are stored this way:

Loop on time t

Loop on z

Loop on y

Loop on x

Let this storage be symbolized by {t, z, y, x}. Dimensions t, z, y and x always appear in this order.
For instance, three-dimensional fields may be stored in formats {z, y, x} or {t, y, x}, {t, z, x} or
{t, z, y}.

3.3 Ground Data

Computing ground data is the first step of a preprocessing as they are necessary to pro-
cess meteorological fields. All programs related to ground-data generation are available in
Polyphemus/preprocessing/ground.

The first step should be program luc-usgs or luc-glcf depending on what raw data you
have. Land use data may come from the US Geological Survey (USGS) or from the Global Land
Cover Facility (GLCF).

3.3.1 Land Use Cover – GLCF: luc-glcf

In order to prepare land use cover from GLCF, one should use program luc-glcf. It is rec-
ommended to download the global land use cover file at 1 km resolution provided in latitude–
longitude coordinates. At the time this documentation is written, the file is available†1 at:

ftp://ftp.glcf.umiacs.umd.edu/glcf/Global Land Cover/Global/

gl-latlong-1km-landcover/gl-latlong-1km-landcover.bsq.gz (single line, no white
space – you may use wget to download it, or copy and paste the URL in your favorite browser).

You need to uncompress this file (e.g., gunzip gl-latlong-1km-landcover.bsq.gz).
Finally you have to fill the configuration file luc-glcf.cfg. Note that the default values

in section [GLCF] are for file gl-latlong-1km-landcover.bsq: no need to change them if you
downloaded this recommended file.

[paths]

Database luc-glcf Directory where the raw data from GLCF can be found (directory
where gl-latlong-1km-landcover.bsq lies).

LUC in Name of the file containing raw data (i.e.,
gl-latlong-1km-landcover.bsq or its new name if you re-
named it).

Directory luc-glcf Output directory.
LUC out Output filename. The default filename LUC-glcf.bin is recom-

mended for clarity.

†1In case the file has been moved, try to find it from http://glcf.umiacs.umd.edu/data/landcover/, or even
from GLCF homepage http://glcf.umiacs.umd.edu/index.shtml.

3.3. GROUND DATA 41

[GLCF]

Step Space step in degrees in GLCF input file.
x min Minimum longitude in the input file (degrees).
y min Minimum latitude in the input file (degrees).
Nx Number of cells along longitude in the input file.
Ny Number of cells along latitude in the input file.
Nc Number of land use categories.

The output land-cover file is in format {c, y, x} where c stands for (land use) category.
Table 3.3 presents land-use categories as they are computed with luc-glcf.

Table 3.3: Land-use categories in GLCF description.

Value Label

0 Water.
1 Evergreen Needleleaf Forest.
2 Evergreen Broadleaf Forest.
3 Deciduous Needleleaf Forest.
4 Deciduous Broadleaf Forest.
5 Mixed Forest.
6 Woodland.
7 Wooded Grassland.
8 Closed Shrubland.
9 Open Shrubland.
10 Grassland.
11 Cropland.
12 Bare Ground.
13 Urban and Built.

Program luc-glcf does not require any date as an input in command line. To launch
luc-glcf, just type:

./luc-glcf ../general.cfg luc-glcf.cfg

3.3.2 Land Use Cover – USGS: luc-usgs

For a simulation over Europe, program luc-usgs requires two files found at http://edcsns17.
cr.usgs.gov/glcc/:

• USGS Land Use/Land Cover Scheme for Eurasia in Lambert Azimuthal Equal Area Projec-
tion (optimized for Europe) available at http://edcftp.cr.usgs.gov/pub/data/glcc/

ea/lamberte/eausgs2 0le.img.gz in compressed format.

• USGS Land Use/Land Cover Scheme for Africa in Lambert Azimuthal Equal Area Projec-
tion available at http://edcftp.cr.usgs.gov/pub/data/glcc/af/lambert/afusgs2 0l.

img.gz in compressed format.

42 CHAPTER 3. PREPROCESSING

The configuration file luc-usgs.cfg requires:

[paths]

Database luc-usgs Directory where the raw data from USGS can be found.
LUC in ea Input file containing raw data for Eurasia (eausgs2 0le.img).
LUC in af Input file containing raw data for Africa (afusgs2 0l.img).
Directory luc-usgs Output directory.
LUC out Output file name. The default filename LUC-usgs.bin is recom-

mended for clarity.

[USGS]

Step Space step in meters.
lon origin ea Longitude of the center of lower-right cell for Eurasia.
lat origin ea Latitude of the center of the lower-right cell for Eurasia.
lon origin af Longitude of the center of the lower-right cell for Africa.
lat origin af Latitude of the center of the lower-right cell for Eurasia.
lon upper left ea Longitude of the center of the upper-left cell for Eurasia.
lat upper left ea Latitude of the center of the upper-left cell for Eurasia.
lon upper left af Longitude of the center of the upper-left cell for Africa.
lat upper left af Latitude of the center of the upper-left cell for Africa.
Nx ea Number of cells along longitude in the input file for Eurasia.
Nx af Number of cells along longitude in the input file for Africa.
Ny ea Number of cells along latitude in the input file for Eurasia.
Ny af Number of cells along latitude in the input file for Africa.
Nc Number of land categories.
Sea index Index of the sea in land categories (Remember that indices start

at 0).

The output land-cover file is in format {c, y, x} where c stands for (land use) category.
Table 3.5 presents land-use categories as they are computed with luc-usgs, that is to say

with indices starting at 0.

Table 3.5: Land-use categories in USGS description (indices
start at 0).

Value Label

0 Urban and Built-Up Land.
1 Dryland Cropland and Pasture.
2 Irrigated Cropland and Pasture.
3 Mixed Dryland/Irrigated Cropland and Pasture.
4 Cropland/Grassland Mosaic.
5 Cropland/Woodland Mosaic.
6 Grassland.
7 Shrubland.
8 Mixed Shrubland/Grassland.
9 Savanna.
10 Deciduous Broadleaf Forest.
11 Deciduous Needleleaf Forest.
12 Evergreen Broadleaf Forest.
13 Evergreen Needleleaf Forest.

3.3. GROUND DATA 43

14 Mixed Forest.
15 Water Bodies.
16 Herbaceous Wetland.
17 Wooded Wetland.
18 Barren or Sparsely Vegetated.
19 Herbaceous Tundra.
20 Wooded Tundra.
21 Mixed Tundra.
22 Bare Ground Tundra.
23 Snow or Ice.

Program luc-usgs does not require any date as an input in command line. To launch
luc-usgs, just type:

./luc-usgs ../general.cfg luc-usgs.cfg

3.3.3 Conversions: luc-convert

The output of luc-glcf or luc-usgs are land use cover described with GLCF or USGS cat-
egories. It is often useful to convert these descriptions to another set of land use categories.
This means, for example, summing up the contributions of sparsely vegetated and bare ground
tundra (USGS categories #19 and #22) to estimate the proportion of barren land in Wesely
description (category #8). An input category may also be split into several output categories.
In practice, one may want to convert in Wesely or Zhang land use cover using luc-convert. In
particular it is necessary to convert land data from USGS or GLCF to Zhang categories before
computing deposition velocities with program dep (see Section 3.5.1).

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration file (or configuration files) for luc-convert:

[paths]

Database luc-convert Directory where the input file (input land use categories) is located.
File in Input file name (in Database luc-convert).
Directory luc-convert Directory where the output file (output land use categories) should

be stored.
File out Output file name (in Directory luc-convert).

[dimensions]

Nc in Number of land categories in the input format.
Nc out Number of land categories in the output format.

[coefficients]

Correspondence matrix between input land categories and output land categories.
Each line corresponds to an input category. Each line contains: the index of the category
(or any number: this first column is not read) and the distribution of the input category
in all output categories (columns). The distribution is a set of numbers in [0, 1]
whose sum should be 1.

Several configuration files are provided to convert GLCF or USGS categories to We-
sely or Zhang categories: glcf to wesely.cfg, glcf to zhang.cfg, usgs to wesely.cfg and
usgs to zhang.cfg.

44 CHAPTER 3. PREPROCESSING

The output land-cover file is in format {c, y, x} where c stands for (land use) category.
The conversion can be launched with:

./luc-convert ../general.cfg usgs_to_wesely.cfg

3.3.4 Roughness: roughness

After land use cover has been computed, roughness data can be estimated, using program
roughness.

[domain]

Nx Number of grid points along longitude.
Ny Number of grid points along latitude.

[paths]

LUC file File where the land use cover data are stored (e.g., computed using
luc-glcf or luc-usgs).

Directory roughness Directory where the output file will be stored.
Roughness out Output file name.

[data]

Roughness data file Path to the file giving the roughness of land categories. This file
should be a text file with three columns: the land category in-
dex (starting at 0), the roughness height (in m) and the cate-
gory name. Two examples are provided: roughness-glcf.dat

and roughness-usgs.dat

The program may be launched with:

./roughness ../general.cfg roughness.cfg

Section [domain] is in general.cfg and the other sections are read in roughness.cfg.

3.3.5 LUC for emissions: extract-glcf

This program is only necessary in order to generate anthropogenic emissions from EMEP in-
ventories (see Section 3.6.2). The output is the land category (read from GLCF global land-use
classification, gl-latlong-1km-landcover.bsq) over a region that covers the simulation do-
main – hence where emissions should be generated. Make sure the output domain (described in
section [subdomain] of the configuration file) entirely contains your simulation domain.

The configuration file should contain (see example extract-glcf.cfg):

[paths]

File GLCF GLCF input file (global). It is the same as the one used for
luc-glcf.

File out Output file. That is, the file given in section [LUC] of
emissions.cfg.

[GLCF]

x min Minimum latitude of the GLCF domain (whole world).
Nx Number of steps along the latitude.

3.4. METEOROLOGICAL FIELDS 45

y max Maximum longitude of the GLCF domain (whole world).
Nx Number of steps along the latitude.
Step Space step (in degrees) of the input GLCF file. The output file

will have the same resolution.

[subdomain]

x min Minimum latitude of the subdomain.
Nx Number of steps along the latitude.
y min Minimum longitude of the subdomain.
Nx Number of steps along the latitude.

The program may be launched with

./extract-glcf ../general.cfg extract-glcf.cfg

Note that the file ../general.cfg is not compulsory providing no markup from it is used in
extract-glcf.cfg.

The output is a binary file of integers between 0 and 13.

3.4 Meteorological Fields

3.4.1 Program meteo

Program Polyphemus/preprocessing/meteo/meteo reads ECMWF Grib files and generates
meteorological fields required by chemistry-transport models. Most fields are interpolated from
ECMWF grid to a regular grid (latitude/longitude in the horizontal, altitudes in meters in the
vertical). It is assumed that ECMWF input data are stored in daily Grib files. That is why this
program (as well as attenuation and Kz) only processes data daily and requires only one date
as an input in command line.

Note that meteo needs as input data the land use cover which can be built using programs
in preprocessing/ground.

The reference configuration files for meteo is Polyphemus/preprocessing/meteo/meteo.cfg
together with Polyphemus/preprocessing/general.cfg. In addition to the domain definition,
below are options of meteo:

[paths]

Database meteo Directory in which ECMWF input files may be found. It is as-
sumed that ECMWF file names are in format ECMWF-YYYYMMDD

where YYYY is the year, MM the month and DD the day. If program
meteo is launched for a day D, ECMWF data files for days D-1
and D must be available. Data for day D-1 are needed to process
cumulated data (e.g., solar radiation).

Roughness in Path to the binary file that describes roughness heights (in meters)
in ECMWF grid cells. Its format is {y, x}. It is needed only if
option Richardson with roughness is activated.

Directory meteo Directory where output meteorological files are stored.

[ECMWF]

Date Date at which the meteorological file begins. It is referred as &D

which is the date given in command line because it is supposed
that ECMWF Grib files store data daily.

46 CHAPTER 3. PREPROCESSING

t min First hour stored in the Grib file.
Delta t Time step (in hour) of data stored in every ECMWF file.
Nt Number of time steps stored in every ECMWF file.
x min Longitude in degrees of the center of the lower-left cell in ECMWF

grid.
Delta x Step length (in degrees) along longitude of ECMWF grid.
Nx Number of cells along longitude (integer) in ECMWF grid.
y min Latitude in degrees of the center of the lower-left cell in ECMWF

grid.
Delta y Step length (in degrees) along latitude of ECMWF grid.
Ny Number of cells along latitude (integer) in ECMWF grid.
Nz Number of vertical layers (integer) in ECMWF grid.

[meteo]

Richardson with roughness Should the surface Richardson number be computed taking into
account roughness height?

[accumulated data]

Accumulated time For data storing values cumulated in time (e.g., solar radiation),
length number of time steps over which data is cumulated.

Accumulated index Start index of the first complete cycle of cumulated data. Data
is then cumulated from t min plus Accumulated index times
Delta t.

To launch the program, just type :

./meteo ../general.cfg meteo.cfg 2001-04-22

The program basically reads data in the ECMWF Grib file and interpolates it in time and
space to Polyphemus grid. ECMWF data is described in meteo.cfg and Polyphemus grid is
described in general.cfg. For the sake of simplicity, it is recommended to work with ECMWF
files containing data for one day: all Polyphemus programs work on a daily basis. Program
meteo should be called for each day (preferably from 0h to 24h), that is, for each available
ECMWF file (except the first one – see below). If ECMWF files are not provided on a daily
basis, it is recommended to contact the Polyphemus team at polyphemus@cerea.enpc.fr.

In order to process the ECMWF file for a given day, the ECMWF file for the previous day
must be available. Indeed, ECMWF files contain data that is accumulated over several time
steps (like rain), and values from previous steps (including from the previous day) must be
subtracted to get the actual value of the field.

Here is the list of input data needed in ECMWF files (with their Grib code): surface temper-
ature (167), skin temperature (235), surface pressure (152), temperature (130), specific humidity
(133), liquid water content (246), medium cloudiness (187), high cloudiness (188), meridional
wind (132), zonal wind (131), zonal friction velocity (180), meridional friction velocity (181),
solar radiation (169), boundary layer height (159), soil water content (39), sensible heat (146),
evaporation (182).

The list of output variables is: pressure, surface pressure, temperature, surface temperature,
skin temperature, Richardson number, surface Richardson number, specific humidity, liquid wa-
ter content, solar radiation, photosynthetically active radiations (direct beam, diffuse and total),
zonal wind, meridional wind, wind module, wind friction module, boundary layer height, soil

3.4. METEOROLOGICAL FIELDS 47

water content, evaporation, sensible heat and first-level wind module.

Inside meteo, ECMWF variables are read and decumulated (in time) if necessary. Pres-
sures at ECMWF levels are computed with ComputePressure and altitudes are computed with
ComputeInterfHeight and ComputeMiddleHeight. Richardson number is then estimated with
ComputeRichardson. All input fields are then interpolated on the vertical. Finally photosynthet-
ically active radiation are estimated, based on solar radiation and zenith angle (ZenithAngle).

To get the complete set of input meteorological data for a transport model, one should then
launch attenuation, Kz and maybe Kz TM.

3.4.2 Program attenuation

Program Polyphemus/preprocessing/attenuation should be launched after program meteo.
It computes cloud attenuation for photolysis rates. It also computes cloud related data, such as
cloud height. Even for passive simulations this program should be launched.

The reference configuration files for attenuation is Polyphemus/preprocessing/meteo/meteo.cfg
together with Polyphemus/preprocessing/general.cfg. In addition to the domain definition
and to the entries of meteo.cfg introduced in Section 3.4.1, below are options for attenuation:

[paths]

Directory attenuation Directory where the output of program attenuation is stored.

[attenuation]

Type Parameterization to be used to compute cloud attenuation. Put 1
to use RADM parameterization or put 2 to use ESQUIF parameteri-
zation.

[clouds]

Min height Minimum cloud basis height in m.

Just like in program meteo, ECMWF data is read and interpolated. Then the
relative humidity and the critical relative humidity are computed respectively with
ComputeRelativeHumidity and ComputeCriticalRelativeHumidity. The cloud fraction
is computed with ComputeCloudFraction. For it the cloudiness and cloud height
are diagnosed using ComputeCloudiness and ComputeCloudHeight. Finally attenua-
tion coefficients are computed with ComputeAttenuation LWC (RADM parameterization) or
ComputeAttenuation ESQUIF (ESQUIF parameterization).

Output files are:

• the rain intensity (Rain.bin) in mm h−1,

• the convective rain intensity (ConvectiveRain.bin) in mm h−1,

• the 3D cloud attenuation coefficient (in [0, 2]),

• the cloud height in m.

3.4.3 Program Kz

Program Kz computes the vertical diffusion coefficients (needed in almost all applications) using
Louis parameterization [Louis, 1979]. It should be launched after attenuation.

48 CHAPTER 3. PREPROCESSING

The reference configuration files for Kz is Polyphemus/preprocessing/meteo/meteo.cfg

together with Polyphemus/preprocessing/general.cfg. In addition to the domain definition
and to the entries of meteo.cfg introduced in Section 3.4.1 and 3.4.2, below are options for Kz:

[paths]

File Kz Name of the file where the vertical diffusion coefficients (output)
are stored.

[Kz]

Min Lower threshold for vertical diffusion in m2 s−1.
Max Higher threshold for vertical diffusion in m2 s−1.
Apply vert If set to no, the lower threshold is applied only at the top of the

first layer, otherwise it is applied to all levels.

This programs mainly computes the vertical diffusion coefficients with a call to ComputeLouisKz.
Simple corrections are also performed to take into account convective conditions.

The output is a 3D time-dependent field (format {t, z, y, x}) of vertical diffusion coefficients
(in m2 s−1). Along the vertical, the coefficients are defined on the interfaces. So the size of the
field (for each day) is Nt× (Nz +1)×Ny×Nx. It is stored in the path given by entry File Kz.

3.4.4 Program Kz TM

Program Kz TM “overwrites”, in the boundary layer height, the vertical diffusion coefficients
computed with Louis parameterization, with coefficients computed according to Troen & Mahrt
parameterization [Troen and Mahrt, 1986]. It should be launched either after Kz or after
MM5-meteo.

The reference configuration files for Kz TM is Polyphemus/preprocessing/meteo/meteo.cfg
or Polyphemus/preprocessing/meteo/MM5-meteo.cfg together with
Polyphemus/preprocessing/general.cfg. In addition to the domain definition in
general.cfg, below are the entries for Kz TM:

[path]

LUC file Path to the binary file that describes land use cover over the output
grid (described in section [domain]). This file must be in format
{l, y, x} (l is the land category) and it must contain proportions
(in [0, 1]) of each land category in every grid cell.

Sea index Index of sea in land categories (remember that indices start at 0).
It is 0 for GLCF description and 15 for USGS description.

Roughness file Path to the binary file that describes roughness heights (in meters)
in output grid cells. Its format is {y, x}. It is needed only if option
Flux diagnosed is activated.

Directory meteo Directory where output meteorological files are stored.
File Kz Name of the file where the vertical diffusion coefficients as com-

puted with the Louis parameterization are stored.
Directory Kz TM Name of the directory where the vertical diffusion coefficients (out-

put) are stored (the filename being Kz TM).

[Kz]

Min Lower threshold for vertical diffusion in m2 s−1.
Max Higher threshold for vertical diffusion in m2 s−1.

3.4. METEOROLOGICAL FIELDS 49

Apply vert If set to no, the lower threshold is applied only at the top of the
first layer, otherwise it is applied to all levels.

p Coefficient used in Troen and Mahrt parameterization (see Troen
and Mahrt [1986]).

C Coefficient used in Troen and Mahrt parameterization (see Troen
and Mahrt [1986]).

SBL Ratio between the surface layer and the atmospheric boundary
layer (0.1 in Troen and Mahrt [1986]).

Ric Critical Richardson number used to estimate the atmospheric
boundary layer height (in case BL diag is set to 2).

Fluxes diagnosed Should the friction module, the evaporation and the sensible heat
be diagnosed? If not, they are read in input data (which is recom-
mended).

BL diag What kind of diagnosis is used to estimate the boundary layer
height? Put 1 to use Troen and Mahrt diagnosis [Troen and Mahrt,
1986]; put 2 to rely on a critical Richardson number; and put 3

to use ECMWF (or MM5) boundary layer height (so, there is no
diagnosis – this option is more robust and it is recommended).

TM stable The vertical diffusion as computed by Troen and Mahrt parame-
terization is applied only within the boundary layer. It is possible
to further restrict its application: if TM stable is set to no, the
parameterization is not applied in stable conditions. In this case,
the Troen and Mahrt parameterization is only applied in unstable
boundary layer.

Several meteorological fields are computed with ComputePotentialTemperature,
ComputeSaturationHumidity and ComputeSurfaceHumidity diag. If fluxes are not di-
agnosed, the Monin-Obukhov length is computed with ComputeLMO. Then the boundary
layer height may be diagnosed with ComputePBLH TM (Troen & Mahrt parameterization)
or ComputePBLH Richardson (critical Richardson number). Finally the vertical diffusion
coefficients are computed with ComputeTM Kz.

The main output is a 3D time-dependent field (format {t, z, y, x}) of vertical diffusion co-
efficients (in m2 s−1). Along the vertical, the coefficients are defined on the interfaces. So
the size of the field (for each day) is Nt × (Nz + 1) × Ny × Nx. It is stored in Kz TM.bin

in the directory given by entry Directory Kz TM. The surface relative humidity is saved in
SurfaceRelativeHumidity.bin. Depending on the options, additional fields may be saved,
such as the Monin-Obukhov length in file LMO.bin.

3.4.5 Program MM5-meteo

Program Polyphemus/preprocessing/meteo/MM5-meteo processes MM5 data and generates
meteorological fields required by chemistry-transport models. Most fields are interpolated from
MM5 grid to a regular grid (latitude/longitude in the horizontal, altitudes in meters in the
vertical).

Note that MM5-meteo needs as input data the land use cover which can be built using
programs in preprocessing/ground.

Note for ECMWF users: program MM5-meteo is equivalent to what is performed by meteo,
attenuation and Kz successively. Similarly to ECMWF files, Kz TM can be used afterwards.

50 CHAPTER 3. PREPROCESSING

Program MM5-meteo can be launched as follows:

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00 2004-08-10_09-00-00

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00 1d

The configuration file MM5-meteo.cfg contains several options:

[paths]

Database MM5 meteo Directory in which MM5 input files may be found. If &D appears
in the file name, it is replaced by MM5-YYYY-MM-DD where YYYY is
the year, MM the month and DD the day.

Directory meteo Directory where output meteorological files are stored.
Directory attenuation Directory where the output of program attenuation is stored.

[MM5]

t min First hour stored in every MM5 file.
Delta t Time step (in hour) of data stored in every MM5 file.
Nt Number of time steps stored in every MM5 file.
x min Index in MM5 coordinates of the center of the lower-left cell in

MM5 grid. This is most likely 0.5.
Delta x Index (MM5 coordinates) increase along longitude of MM5 grid.

This is most likely 1.
Nx Number of cells (or dot points) along longitude (integer) in MM5

grid.
y min Index in MM5 coordinates of the center of the lower-left cell in

MM5 grid. This is most likely 0.5.
Delta y Index (MM5 coordinates) increase along latitude of MM5 grid.

This is most likely 1.
Ny Number of cells (or dot points) along latitude (integer) in MM5

grid.
Nz Number of vertical layers (integer) in MM5 grid.
projection type Type of projection. 1 corresponds to Lambert conformal conic, 2

to Mercator and 3 to stereographic.

[accumulated rain]

Prev accumulated rain Is the rain accumulated from the previous day?

[attenuation]

Type Parameterization to be used to compute cloud attenuation. Put 1
to use RADM parameterization or put 2 to use ESQUIF parameteri-
zation.

[clouds]

Min height Minimum cloud basis height in m.

[Kz]

Min Lower threshold for vertical diffusion in m2 s−1.
Max Higher threshold for vertical diffusion in m2 s−1.
Apply vert If set to no, the lower threshold is applied only at the top of the

first layer, otherwise it is applied to all levels.

3.4. METEOROLOGICAL FIELDS 51

The program basically reads data in MM5 output file and interpolates it in time and space
to Polyphemus grid. MM5 file is described in MM5-meteo.cfg and Polyphemus grid is described
in general.cfg. Note that each time a field is loaded by MM5-meteo, all time steps are loaded
in memory. Note that the fields are released from memory when unused, but you may still need
a lot of memory for big MM5 output files.

The program first computes the altitude of MM5 layers, and converts the Polyphe-
mus grid coordinates (latitude/longitude) to MM5 grid coordinates (Lambert, Mercator or
stereographic) for interpolations. Interpolations on the horizontal are performed in MM5
grid for efficiency. The pressure is computed based on MM5 fields. The winds are ro-
tated: this gives meridional and zonal winds. The Richardson number is then computed
(ComputeRichardson). The relative humidity and the critical relative humidity are computed
respectively with ComputeRelativeHumidity and ComputeCriticalRelativeHumidity. The
cloud fraction is computed with ComputeCloudFraction. For it the cloudiness and cloud
height are diagnosed using ComputeCloudiness and ComputeCloudHeight. Finally attenua-
tion coefficients are computed with ComputeAttenuation LWC (RADM parameterization) or
ComputeAttenuation ESQUIF (ESQUIF parameterization). The vertical diffusion coefficients
are computed with ComputeLouisKz [Louis, 1979]. Finally photosynthetically active radiation
are estimated, based on solar radiation and zenith angle (ZenithAngle).

Among output files one may find:

• the pressure and the surface pressure in Pa,

• the temperature, the surface temperature and the skin temperature in K,

• the meridional and zonal winds (MeridionalWind.bin and ZonalWind.bin) in m s−1,

• the Richardson number and the surface Richardson number,

• the boundary layer height in m,

• the vertical diffusion coefficients (time-dependent 3D field, defined on layer interfaces on
the vertical, Kz Louis.bin) in m2 s−1,

• the specific humidity in kg kg−1,

• the liquid water content in kg kg−1,

• the cloud attenuation coefficients (3D field, Attenuation.bin) in [0, 2],

• the solar radiation intensity (SolarRadiation.bin) in W m−2,

• the rain intensity (Rain.bin) in mm h−1,

• the convective rain intensity (ConvectiveRain.bin) in mm h−1,

• the cloud height in m.

3.4.6 Program MM5-meteo-castor

Program MM5-meteo-castor processes MM5 data and generates meteorological fields required
by chemistry-transport model Castor.

52 CHAPTER 3. PREPROCESSING

[domain]

Vertical levels File containing the parameters alpha and beta used to
compute the pressure at various levels and the alti-
tudes. Note that for most preprocessing programs, this
field designates file preprocessing/levels.dat but not
for this specific application, for which you can use file
preprocessing/meteo/hybrid coefficients.dat.

[paths]

Database MM5 meteo Directory in which MM5 input files may be found. If &D
appears in the file name, it is replaced by YYYY-MM-DD

where YYYY is the year, MM the month and DD the day.
Roughness file Path to the binary file that describes roughness heights

(in meters) per month in output grid cells. Note that
this file is not the output of program roughness.

Directory meteo Directory where output meteorological files are stored.

[MM5]

t min First hour stored in every MM5 file.
Delta t Time step (in hour) of data stored in every MM5 file.
Nt Number of time steps stored in every MM5 file.
x min Index in MM5 coordinates of the center of the lower-left

cell in MM5 grid. This is most likely 0.5.
Delta x Index (MM5 coordinates) increase along longitude of

MM5 grid. This is most likely 1.
Nx Number of cells (or dot points) along longitude (integer)

in MM5 grid.
y min Index in MM5 coordinates of the center of the lower-left

cell in MM5 grid. This is most likely 0.5.
Delta y Index (MM5 coordinates) increase along latitude of MM5

grid. This is most likely 1.
Ny Number of cells (or dot points) along latitude (integer)

in MM5 grid.
Nz Number of vertical layers (integer) in MM5 grid.
projection type Type of projection. 1 corresponds to Lambert conformal

conic, 2 to Mercator and 3 to stereographic.
Horizontal interpolation Type of horizontal interpolation used. MM5 corresponds

to MM5 coordinates and latlon to latitude/longitude
coordinates.

Dot coordinates File containing coordinates of dot points. Used if
Horizontal interpolation is set to latlon.

[meteo]

Relative humidity threshold Minimum relative humidity above which cloud are
formed.

Low cloud top max Low clouds maximum height (in m).

Kz]

3.5. DEPOSITION VELOCITIES 53

Min dry Minimum value of Kz in PBLH for dry conditions (in
m s−2).

Min wet Minimum value of Kz in PBLH for cloudy conditions (in
m s−2).

Min above PBLH Minimum value of Kz above PBLH (in m s−2).
Max Maximum value for Kz (in m s−2).

Among output files one may find:

• the altitude in meters,

• the air density (AirDensity.bin)

• the pressure in Pa (Pressure.bin),

• the temperature and temperature at 2 m in K (Temperature.bin and Temperature 2m.bin),

• the meridional wind , zonal wind, convective velocity and wind module at 10 m (MeridionalWind.bin,
ZonalWind.bin, ConvectiveVelocity.bin and WindModule 10m.bin) in m s−1,

• the boundary layer height in m (PBLH.bin),

• the vertical diffusion coefficients using Troen and Mahrt parameterization (Kz.bin) in
m2 s−1,

• the specific humidity in kg kg−1 (SpecificHumidity.bin),

• the surface relative humidity (SurfaceRelativeHumidity.bin,

• the liquid water content in kg kg−1 (LiquidWaterContent.bin),

• the cloud attenuation coefficients (Attenuation.bin)

• the soil moisture (SoilMoisture.bin),

• the aerodynamic resistance (AerodynamicResistance.bin),

• the friction velocity in m s−1 (FrictionModule.bin),

3.5 Deposition Velocities

Deposition velocities are generated on the basis of meteorological fields and land data. The
programs must be launched after meteorological and ground preprocessing.

The computation of deposition velocities for Gaussian models is presented in Section 3.9.2.

3.5.1 Program dep

The program dep computes deposition velocities according to Wesely [1989] or Zhang et al.
[2003].

In addition to general.cfg, the program reads the configuration in dep.cfg. In this file,
paths to several files generated by programs meteo or MM5-meteo are given.

54 CHAPTER 3. PREPROCESSING

[paths]

SurfaceTemperature File where surface temperature is stored.
SurfaceRichardson File where surface Richardson number is stored.
SolarRadiation File where solar radiation is stored.
WindModule File where wind module is stored.
PAR File where photosynthetically active radiation is stored.
PARdiff File where the diffuse part of the photosynthetically active radia-

tion is stored.
PARdir File where the direct beam part of photosynthetically active radi-

ation is stored.
SpecificHumidity File where (3D) specific humidity is stored.
SurfacePressure File where surface pressure is stored.
FrictionVelocity File where friction velocity is stored.
CanopyWetness File where canopy wetness is stored.
Rain File where rain is stored.
RoughnessHeight File where roughness height is stored.
Type Configuration file that describes land use cover (see below for de-

tails about this file).
Data File containing the data for species. This file should contain:

the species name, the molecular weight (g mol−1), Henry con-
stant, diffusivity, reactivity, alpha [Zhang et al., 2003], beta [Zhang
et al., 2003], Rm. An example for RADM/RACM is available in
preprocessing/dep/input/species data.txt.

Directory dep Directory where the output files are stored.

[Species]

Ns Number of species for which data are pro-
vided. This should be the number of columns in
preprocessing/dep/input/species data.txt.

[Options]

CellRoughness If this option is set to yes, the roughness height used in calculations
only depends on the model cell (and not on the land use category).
In this case, it uses the data file whose path is given in entry
RoughnessHeight (section [paths]). If the options is set to no

(recommended), the roughness height depends on the land use
category (see entry Type).

Ra Parameterization used to compute the aerodynamic resistance.
You can choose between fh (heat flux), fm (momentum flux) or
diag (diagnostic).

Rb Parameterization used to compute the quasi-laminar sublayer re-
sistance. You can choose between friction and diag.

Rc Parameterization used to compute the canopy resistance (Zhang
et al. [2003] or Wesely [1989]).

Save resistance Should Ra, Rb and Rc be saved? This may take a lot of storage
space: put no if you do not work on the deposition parameteriza-
tions.

3.5. DEPOSITION VELOCITIES 55

Entry Type is the path to a configuration file whose entries should be:

File Path to the file describing the land use cover. The number of cate-
gories in the file is deduced from its size, but it must be consistent
with the data provided in the following entries (Midsummer, etc.)

Midsummer Data file for midsummer (see below for details).
Autumn Data file for autumn (see below for details).
Late autumn Data file for late autumn (see below for details).
Snow Data file for snow (see below for details).
Spring Data file for spring (see below for details).

The data files mentioned above for the five “seasons” must contain a column for each land
use category with 22 parameters in each column. You may modify these files or create new files
only if you are well aware of deposition parameterizations. With Polyphemus, a set of 5 files
is provided for convenience, and any beginner should use them. They are suited for land use
categories as defined in Zhang et al. [2002].

A key step is therefore to generate a land use description with these categories (referred as
Zhang categories). The recommended program to generate this file is luc-convert which is
described in Section 3.3.3. You should use this program to convert GLCF or USGS land cover
to Zhang categories.

Please note that the program dep chooses which land use file to use according to the month
of the beginning date only. Therefore, if you need deposition velocities for a date range during
which the “season” changes, make sure to launch different simulations for the different seasons.

The program may be launched this way:

./dep ../general.cfg dep.cfg 20040809

3.5.2 Program dep-emberson

The program dep-emberson is used to compute deposition velocities for Castor model, using
Emberson parameterization.

[paths]

Altitude File where altitude is stored.
SurfaceTemperature File where surface temperature is stored.
SurfaceRelativeHumidity File where surface relative humidity is stored.
FrictionVelocity File where the friction velocity is stored.
Attenuation File where the attenuation is stored.
AerodynamicResistance File where the aerodynamic resistance is stored.
LUC file File containing the land use cover.
Nc Number of land use cover categories.
Nveg Number of vegetation classes.
Land data File containing land data in Chimere format.
Species data File containing the data for species (molecular weight, Henry con-

stant, reactivity).
Directory dep Directory where the output files are stored.

[Species]

Ns Number of species for which data are provided.

56 CHAPTER 3. PREPROCESSING

The program must be launched with:

./dep-emberson ../general.cfg dep-emberson.cfg 20040809

3.6 Emissions

Emissions are generated on the basis of land data (anthropogenic emissions) and meteorological
fields (biogenic emissions). The programs must be launched after meteorological and ground
preprocessing.

For Gaussian models, a preprocessing step may also be required in case line emissions are
included (see Section 3.9.1).

3.6.1 Mapping Two Vertical Distributions: distribution

Program distribution may be used to define the distribution of emissions along the vertical.
It reads the vertical distribution of emissions in some input grid and maps this distribution on
an output vertical grid. Thus it generates a file with the vertical distribution of emissions in the
output grid. It is based on AtmoData function ComputeVerticalDistribution.

Running this program is not compulsory. Even if the vertical distribution of emissions is
required to compute anthropogenic emissions (program emissions), the vertical distribution
can be generated by other means (including “by hand”).

[domain]

Nz Number of output vertical levels.
Vertical levels Path to the text file that stores the altitudes (in m) of

output level interfaces (hence Nz+1 values are read).

[EMEP]

Nz in Number of input vertical levels.
Vertical levels Path to the text file that stores the altitudes (in m) of

input level interfaces (hence Nz in+1 values are read).
Vertical distribution Path to the file with the input vertical distribution of

emissions. This file should contain one line per emission
sector. Each line contains the percentage of emissions at
ground level (first column) and the percentage of emis-
sions in each vertical level (Nz in following columns).

Polair vertical distribution Path to the output file where the output vertical distri-
bution of emissions should be stored. The format is the
same as in file Vertical distribution.

Nsectors Number of activity sectors.

3.6.2 Anthropogenic Emissions (EMEP): emissions

Program emissions processes an EMEP emission inventory and generates (anthropogenic) sur-
face and volume emissions needed by Polair3D.

First you must download Expert emissions inventories from http://webdab.emep.int/.
Download emissions for CO, NH3, NNMVOC, NOx, SOx, PM2.5 and PMcoarse and make sure
to have a file for each species called CO.dat, NH3.dat, NMVOC.dat, NOX.dat, SOX.dat, PM2.5.dat
and PMcoarse.dat.

Download files with the following options:

3.6. EMISSIONS 57

• for all countries;

• for the year of your choice (up to 2004);

• for all activity sectors (SNAP), note that emissions for the eleventh EMEP sector are
better estimated with program bio (see Section 3.6.3) but that if they are included in the
inventory, they are ignored;

• in format “Grid (50 km × 50 km), Semicolon-Separated”;

• for one species at a time.

In addition to the domain definition (Section 3.2.2), program emissions reads a configuration
file such as emissions.cfg:

[paths]

Directory surface emissions Directory where the computed surface emissions are
stored.

Directory volume emissions Directory where the computed volume emis-
sions are stored. This should be different from
Directory surface emissions since files for surface
emissions and volume emissions have the same names
(species names).

[EMEP]

Polair vertical distribution File where the vertical distribution of emissions is stored.
This file should contain one line per emission sector.
Each line contains the percentage of emissions at ground
level (first column) and the percentage of emissions in
each vertical level (Nz following columns).

Input directory Directory containing EMEP emissions inventory.
Hourly factors File defining hourly factors (see below).
Weekdays factors File defining weekdays factors (see below).
Monthly factors File defining monthly factors (see below).
Time zones File defining the time zone for various countries.
Nx emep Number of cells along longitude (integer) in EMEP grid.
Ny emep Number of cells along latitude (integer) in EMEP grid.
Ncountries Maximum code number of the countries covered by the

inventory. If a code number in the inventory is greater
than or equal to Ncountries, an error message is thrown.

Species Names of inventory species.
Nsectors Number of activity sectors.
Urban ratio Emission ratio for urban areas (see below).
Forest ratio Emission ratio for forest (see below).
Other ratio Emission ratio for other areas (see below).

[LUC]

File Path to land use cover file.
x min Longitude in degrees of the center of the lower-left cell

in LUC grid.
Delta x Step length (in degrees) along longitude of LUC grid.

58 CHAPTER 3. PREPROCESSING

Nx Number of cells along longitude (integer) in LUC grid.
y min Latitude in degrees of the center of the lower-left cell in

LUC grid.
Delta y Step length (in degrees) along latitude of LUC grid.
Ny Number of cells along latitude (integer) in LUC grid.

[Species]

N Number of emitted species.
Aggregation Aggregation matrix file (relations of the emitted species

to the real chemical species).
Speciation directory Directory in which, for each inventory species XXX, a file

XXX.dat contains the speciation to real chemical species
as function of the emission sector (columns).

Deposition factor NH3 Part of emitted NH3 which is deposited right away.

The program emissions reads EMEP emissions inventory, multiplies them by temporal
factors and interpolates them on Polair3D grids. EMEP emissions are read with AtmoData
function ReadEmep. The spatial interpolation is performed with EmepToLatLon.

LUC file This file gives the land categories in GLCF description in a domain that must contain
your simulation domain – but this LUC domain should not be too large because of computational
costs. You can generate this file using program extract-glcf (see Section 3.3.5).

Urban, forest and “other” ratios Ratios Urban ratio, Forest ratio and Other ratio

enable to distribute emissions of an EMEP cell according to the type of land (urban, forests
and other categories). For instance, in an EMEP cell, emissions are distributed so that the
ratio between total urban emissions and total emissions is Urban ratio on top of the sum of
Urban ratio, Forest ratio and Other ratio.

Temporal Factors EMEP emissions are provided as annual values. They are multiplied by
temporal factors to estimate their time evolution (as function of month, week day and hour) in
all emission sectors and in all countries.

Here are examples on how these factors should be provided:

• monthly factors.dat gives the factors for each country index (CC), each activity sector
(SNAPsector) and each month.

Formate: CC SNAPsector JAN FEB MAR APR MAY JUN JUL ...

2 1 1.640 1.520 1.236 1.137 0.798 0.459 0.393 ..

• weekdays factors.dat gives the factors for each country index (CC), each activity sector
(SNAPsector) and each day of the week.

Formate: CC SNAPsector MON TUE WED Thu FRI SAT SUN

2 1 1.0159 1.0348 1.0399 1.0299 1.0298 0.9651 0.8846

• hourly factors.dat gives the factor for each activity sector (SNAPsector) and each hour.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

3.6. EMISSIONS 59

In addition to these factors a file called time zones.dat is necessary. It gives the various
countries in EMEP inventories and their time zone offset to GMT. Please note that the list of
countries in the inventories may vary without warnings. If it happens, the code should raise an
error and tell you what country code in time zones.dat is unknown.

3.6.3 Biogenic Emissions for Polair3D Models: bio

Program bio computes biogenic emissions on the basis of meteorological fields and land use
cover.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for bio (see example bio.cfg):

[paths]

SurfaceTemperature Binary file where the surface temperature is stored.
PAR Binary file where the photosynthetically active radiation

is stored.
LUC file Binary file where the land use cover is stored.
Land data Data file giving emission factors for isoprene, terpenes

and NOx for all land categories defined in LUC file. In
this file, each line (which is not empty or does not start
with “#”) provides data for one land use category. For
such a line, the first 55 characters are discarded: you may
put the category number and description for convenience.
Then four columns are read with the biomass density
(g m−2), and the emission factors for isoprene, terpenes
and NOx (in this order). Two examples are provided
with land data glcf.dat and land data usgs.dat, to
be used in combination with land use cover generated by
luc-glcf or luc-usgs respectively.

Directory bio Directory where output biogenic emissions are stored.

[biogenic]

Delta t Time step (in hours) for the output biogenic emissions.
For simulations with Polair3D, anthropogenic emissions
and biogenic emissions must have the same time step
(that is, usually one hour).

Rates Should emission rates be saved? These rates are not
needed by chemistry-transport models.

Terpenes Names of the species included in terpenes emissions. For
RACM Stockwell et al. [1997], put API and LIM.

Terpenes ratios Distribution of terpenes emissions among species (entry
Terpenes).

Biogenic emissions are computed according to Simpson et al. [1999]. Meteorological data
is first interpolated in time so that its time step is Delta t (section [biogenic]). Emission
rates are then computed using AtmoData function ComputeBiogenicRates and emissions using
ComputeBiogenicEmissions.

60 CHAPTER 3. PREPROCESSING

3.6.4 Biogenic Emissions for Castor Models: bio-castor

Program bio-castor is slightly different from bio, in particular regarding the data provided.

[paths]

SurfaceTemperature Binary file where the surface temperature is stored.
WindModule 10m Binary file where the wind module at 10 m is stored.
Attenuation Binary file where attenuation data are stored.
SoilMoisture Binary file where the moisture of the ground is stored.
ConvectiveVelocity Binary file where the convective velocity is stored.
Land data Land data in Chimere format.
Directory bio Directory where output biogenic emissions are stored.

[biogenic]

Minimum wind velocity Minimum value of WindModule 10m.
Terpenes Species between which terpene emissions are distributed.
Terpenes ratios Ratio of the terpene emissions for each of the above

species.

3.6.5 Sea Salt Emissions: sea-salt

Program sea salt computes the emissions of sea-salt aerosols. Its options and parameters are
given in sea salt.cfg.

[paths]

Surface wind module file Binary where the wind module at surface is stored.
Directory sea salt Directory where sea-salt emissions are stored.

[sea salt]

Threshold radius Radius above which Monahan parameterization is used
(in µm).

Delta t Time step for sea-salt emissions computation.

[LUC]

File File containing land use cover.
Nb luc Number of land categories.
Sea index Index of sea in land categories (recall that indices start

at 0).

[PM]

Section computed Should diameter classes bounds be computed? Otherwise
they are read in File sections.

Diameter min Minimum diameter if diameter classes bounds are com-
puted.

Diameter max Maximum diameter if diameter classes bounds are com-
puted.

Nsections Number of diameter classes.
File sections File containing the diameter classes bounds if they are

not computed.

3.7. INITIAL CONDITIONS: IC 61

3.7 Initial Conditions: ic

Climatological concentrations from Mozart 2 [Horowitz et al., 2003] are used to generate initial
concentrations for photochemistry simulation with Polair3D.

Program ic has been tested with Mozart 2 output files downloaded on NCAR data portal
at http://cdp.ucar.edu.

To download any data from the NCAR Community Data Portal you need to register. This is
quite easy and fast but there is a second step. You also have to ask for an access to Mozart data
specifically. This takes longer as the application has to be reviewed by someone but it should
go without problems if you say that you need Mozart data to generate initial and boundary
conditions for a CTM.

The data can be found in “ACD: Atmospheric Chemistry Models, Data Set and Visualization
Tools”. If you registered, in this section of the site, you should be able to access “MOZART
(Model for OZone And Related chemical Tracers)”. This opens a page with various informations
about Mozart and in particular, in “Nested Collections” a link named “MOZART-2 MACCM3
Standard Simulation (v2.1)”. Click on this link.

At the time, the direct link is http://cdp.ucar.edu/browse/browse.htm?uri=http://

dataportal.ucar.edu/metadata/acd/mozart/mozart2/mozart v2 1 maccm3.thredds.xml,
but if this changes a search for “MOZART MACCM3” should lead you to the page.

There are 38 files available in NCAR Community Data Portal (from hc0040.nc to hc0077.nc).
One file gathers data for ten consecutive days. File hc0040.nc start at 26 December. Data in
those files have been generated for a typical year, which means they can be use to generate
boundary conditions for any year. See Equation 3.1to know how to determine the file you need
given the date for which you want to generate the initial conditions.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for ic (see example ic.cfg):

[ic input domain]

Date ic Date for which initial conditions are generated.
Nt Number of time steps in Mozart 2 files.
Delta t Time step of Mozart 2 files (in hours).
Nx Number of grid points along latitude in Mozart 2 files (integer).
Ny Number of grid points along longitude in Mozart 2 files (integer).
Nz Number of vertical levels in Mozart 2 files (integer).
Database ic Directory where the Mozart 2 files are available. Mozart 2 file-

names are in form h00xx.nc where xx is computed by the program
according to the date Date ic.

[ic files]

62 CHAPTER 3. PREPROCESSING

Species File providing correspondence between the name of species
in Mozart 2 files and the name of species in simulation. In
this file, the first column contains Mozart 2 species. After
each Mozart 2 species name, the corresponding output species
(e.g., RACM species) is put, if any. If Mozart 2 species gath-
ers two output species, put the names of all output species
followed by their proportion in Mozart 2 bulk species. For
instance, the line C4H10 HC5 0.4 HC8 0.6 splits Mozart 2
species C4H10 into HC5 (40%) and HC8 (60%). Three ex-
amples are provided: preprocessing/bc/species v1.dat,
preprocessing/bc/species v2.dat and
preprocessing/bc/species v3.dat.

Molecular weight File providing the molecular weights of output species.
Directory ic Directory where the output initial conditions must be stored.

The name of the Mozart 2 files must be in the form h00xx.nc where xx is computed as
shown in Equation 3.1.

xx = 40 + int

[

Nd + 6

10

]

(3.1)

with Nd the number of days since the beginning of the year (0 for first January) and int(x)
represents the integral part of x.

Output results are in µg m−3.
In case your Mozart 2 files do not satisfy this format (this may happen if Mozart files are

updated on the NCAR data portal), you may modify the code or contact Polyphemus team at
polyphemus@cerea.enpc.fr.

3.8 Boundary Conditions

3.8.1 Boundary Conditions for Gaseous Species: bc

Boundary condition for gaseous species are generated using Mozart 2 files. See Section 3.7 on
how to get those files.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for bc (see example bc.cfg):

[bc input domain]

Nt Number of time steps in Mozart 2 files.
Delta t Time step of Mozart 2 files (in hours).
Nx Number of grid points along latitude in Mozart 2 files (integer).
Ny Number of grid points along longitude in Mozart 2 files (integer).
Nz Number of vertical levels in Mozart 2 files (integer).

[bc files]

Directory bc Directory where the output boundary conditions must be stored.

3.8. BOUNDARY CONDITIONS 63

Species File providing correspondence between the name of species
in Mozart 2 files and the name of species in simulation. In
this file, the first column contains Mozart 2 species. After
each Mozart 2 species name, the corresponding output species
(e.g., RACM species) is put, if any. If Mozart 2 species gath-
ers two output species, put the names of all output species
followed by their proportion in Mozart 2 bulk species. For
instance, the line C4H10 HC5 0.4 HC8 0.6 splits Mozart 2
species C4H10 into HC5 (40%) and HC8 (60%). Three ex-
amples are provided: preprocessing/bc/species v1.dat,
preprocessing/bc/species v2.dat and
preprocessing/bc/species v3.dat.

Molecular weight File providing the molecular weights of output species.

Program bc processes an entire Mozart 2 output file. If this file contains concentrations for
10 days, the program generates boundary conditions for 10 days.

The program must be launched with:

./bc bc.cfg ../general.cfg /net/libre/adjoint/mallet/mozart/h0067.nc

The last argument is the path to the Mozart 2 file. You have to select the file to use according
to date as what is shown in Section 3.7.

The results are in µg m−3. They are stored as &f &c.bin where &f is replaced by the name
of the species and &c by the direction associated with the boundary condition (x, y or z). For
example, the concentrations in O3 x.bin are interpolated at both ends of the domain along x,
for all grid points along y and z.

3.8.2 Boundary Conditions for Aerosol Species: bc-gocart

Boundary conditions for aerosol species are obtained using Gocart model†2 thanks to the program
bc-gocart.

Gocart format and conventions

Gocart model usually provides files with the following naming convention:

file name signification

yyyymm.XX.vs.g 6-hourly concentrations in g m−3.
yyyymm.XX.vs.g.day daily averaged concentrations in g m−3.
yyyymm.XX.vs.g.avg monthly averaged concentrations in g m−3.

where yyyymm is the year and month (e.g., 200103), XX is the Gocart species, which can
be either SU (sulfur), CC (carbonaceous), DU (dust), SS (sea-salt), and vs is the version (e.g.,
STD.tv12).

Gocart species may have further speciations:

• SU (sulfur): Total 4, 1-DMS, 2-SO2, 3-SO4, 4-MSA.

• CC (BC+OC): Total 4, 1-hydrophobic BC, 2-hydrophobic OC, 3-hydrophilic BC, 4-
hydrophilic OC.

†2http://code916.gsfc.nasa.gov/People/Chin/gocartinfo.html

64 CHAPTER 3. PREPROCESSING

• DU (dust): Total 5, 1-Re=0.1-1, 2-Re=1-1.8, 3-Re=1.8-3, 4-Re=3-6, 5-Re=6-10 µm. The
first group (0.1-1 µm) contains the following subgroups:

– 0.10-0.18 µm (fraction = 0.01053)

– 0.18-0.30 µm (fraction = 0.08421)

– 0.30-0.60 µm (fraction = 0.25263)

– 0.60-1.00 µm (fraction = 0.65263)

• SS (sea-salt): Total 4, 1-Re=0.1-0.5, 2-Re=0.5-1.5, 3-Re=1.5-5, 4-Re=5-10 µm.

The data format of Gocart files is “direct access binary, 32 bits, big endian”. As an example,
here is how they should be read in Fortran 77 language:

dimension Q(imx,jmx,lmx)

do k=1,nstep

do n=1,nmx

read(unit) nt1,nt2,nn,Q

end do

enddo

where

• imx = total number of longitudinal grid (144),

• jmx = total number of latitudinal grid (91),

• lmx = total number of vertical layers (version dependent),

• nmx = total number of species (4 or 5, see species list above),

• nt1 = yyyymmdd after 2000 (year-month-day, e.g., 20010201), or yymmdd before 2000
(e.g., 970101)

• nt2 = hhmmss (hour-minute-second, e.g., 120000)

• nn = tracer number (see species list above)

• Q = 3-dimensional concentration of tracer nn

• nstep = total time step (e.g., in 200101, nstep=4*31 for 4-times/day, nstep=31 for daily
average files, and nstep=1 for monthly average files).

Important

• If you plan to read Gocart data on your own, do not forget to translate files from big
endian to little endian if necessary.

• The conventions and format of Gocart files may change in the future.

3.8. BOUNDARY CONDITIONS 65

Fields resolution

The horizontal resolution of Gocart fields is 2 degree latitude × 2.5 degree longitude, except
at the poles where latitudinal resolution is 1 degree. In other words the longitude interval is
[−180 : 2.5 : 177.5] (144 cells) and the latitude one is [−89.5 − 88 : 2 : 8889.5] (91 cells).

The vertical resolution is given as a given number of vertical sigma levels. The number of
vertical levels depends of the year :

• 1980-1995: 20 sigma layers centered at 0.993936, 0.971300, 0.929925, 0.874137, 0.807833,
0.734480, 0.657114, 0.578390, 0.500500, 0.424750, 0.352000, 0.283750, 0.222750, 0.172150,
0.132200, 0.100050, 0.0730000, 0.0449750, 0.029000, 0.00950000

• 1996-1997: 26 vertical sigma layers centered at 0.993935, 0.971300, 0.929925, 0.875060,
0.812500, 0.745000, 0.674500, 0.604500, 0.536500, 0.471500, 0.410000, 0.352500, 0.301500,
0.257977, 0.220273, 0.187044, 0.157881, 0.132807, 0.111722, 0.0940350, 0.0792325, 0.0668725,
0.0565740, 0.0447940, 0.0288250, 0.00997900

• 2000-2002: 30 vertical sigma layers centered at 0.998547, 0.994147, 0.986350, 0.974300,
0.956950, 0.933150, 0.901750, 0.861500, 0.811000, 0.750600, 0.682900, 0.610850, 0.537050,
0.463900, 0.393650, 0.328275, 0.269500, 0.218295, 0.174820, 0.138840, 0.109790, 0.0866900,
0.0684150, 0.0539800, 0.0425750, 0.0335700, 0.0239900, 0.0136775, 0.00501750, 0.00053000

Gocart files processing

Gocart files are handled by bc-gocart program which takes 4 arguments:

./bc-gocart ../general.cfg bc-gocart-CC.cfg 200101.CC.STD.tv15.g.day 200101

where

• ../general.cfg is the general configuration file,

• bc-gocart-CC.cfg is the configuration file for CC Gocart species,

• 200101.CC.STD.tv15.g.day is the Gocart file

• 200101 is the date of Gocart file, this file corresponds to daily carbonaceous values during
month of January 2001.

The gocart configuration file bc-gocart-CC.cfg provides all necessary informations to read
Gocart fields and how to translate them into polair3d species.

[paths]

Temperature Meteorological file of temperature.
Directory bc Directory where output will be written.

[bc input domain]

x min Minimum longitude in Gocart resolution.
y min Minimum latitude in Gocart resolution.
Delta x Gocart longitude resolution.
Delta y Gocart latitude resolution.
Nx Number of grid cells in the longitude Gocart axe.
Ny Number of grid cells in the latitude Gocart axe.
Nz Number of Gocart vertical layers.

66 CHAPTER 3. PREPROCESSING

Sigma levels File where are written the center of Gocart sigma levels.
Scale height Scale height in meter.
Surface pressure Surface pressure in atm.
Top pressure Pressure at top of Gocart level (in atm).

There are two more sections in configuration file.
The first one is [input species]. Each non blank line of this section corresponds to one

speciation of Gocart species, e.g. CC is sub-divided in CC-1, CC-2, CC-3, CC-4. The range
after the delimiter “:” is the aerosol size range (in SIµm) to which this sub-species apply. Most
of the time this is the whole aerosol size range of polair3d model (e.g. 0.1 − 10.0), but in the
case of dust (DU) each sub-species may correspond to a precise part of the polair3d aerosol
size range, see configuration file bc-gocart-DU.cfg for an illustration.

The second section is [output species]. Each non blank line of this section corresponds
to one aerosol species of polair3d model. The columns after “:” delimiter correspond to the
Gocart sub-species. Therefore the number of line in previous section must equal the number of
column after “:” delimiter. The numbers in these columns are the fraction (between 0.0 − 1.0)
of given Gocart sub-species that will contribute to given model species. As an example in
bc-gocart-CC.cfg the first line

PBC: 1. 0. 1. 0.

means that sub-species CC-1 and CC-3 will fall into PBC Polair3D species, and nowhere else.
In the same way the following line

PPOA: 0. 0.4 0. 0.4

means that PPOA species is composed of 40% of CC-2 and 40% of CC-4.

Important The Gocart files are proceeded month by month.

• The beginning date of computation is the one provided in ../general.cfg if the beginning
month is equal to the Gocart month, beginning of Gocart month otherwise.

• The end date of computation is provided by the length of file Temperature. If this length
exceeds the Gocart month, the end date is set to end of Gocart month.

• If some boundary files already exist, the program bc-gocart will not overwrite them but
append its result to each.

For example if you want to compute boundary conditions between 15th of April to 15th of June
2001, you would launch bc-gocart three times:

./bc-gocart ../general.cfg bc-gocart-CC.cfg 200104.CC.STD.tv15.g.day 200104

./bc-gocart ../general.cfg bc-gocart-CC.cfg 200105.CC.STD.tv15.g.day 200105

./bc-gocart ../general.cfg bc-gocart-CC.cfg 200106.CC.STD.tv15.g.day 200106

The file given in Temperature field of configuration file bc-gocart-CC.cfg must respectively
start and end exactly at dates 2001-04-15 and 2001-06-15.

The python script bc-gocart.py provides an easy way to compute boundary conditions
without worrying about how many times to launch bc-gocart. In the last example, one should
simply launch:

./bc-gocart.py ../general.cfg 04 06

where 04 and 06 respectively stands for the first and last month to treat. Pay attention that
some paths must be supplied inside this script (paths of Gocart configuration and data files) for
it to work.

3.9. PREPROCESSING FOR GAUSSIAN MODELS 67

Remarks

Gocart does not provide any boundary conditions for nitrate and ammonia, you have to com-
pute them on your own. Nevertheless a quick way to compute boundary conditions for ammonia
is to apply electroneutrality to already computed aerosol boundary conditions from Gocart (or
whatever else in fact). This can be done by bc-nh4 program which takes two arguments:

./bc-nh4 ../general.cfg bc-nh4.cfg

The electroneutrality equation is set in configuration file bc-nh4.cfg.

3.9 Preprocessing for Gaussian Models

3.9.1 Program discretization

The aim of this program is to discretize a line emission in the case of a continuous source (plume
source) or an instantaneous one (puff source). It reads a line source given by two points or
more, and gives in return the discretized source. The output data is a list of point sources
whose coordinates have been calculated given the line coordinates and the number of points to
discretize the line, or the source velocity in the case of a moving source (for puff sources only).

The program discretization is launched with one configuration file. The reference config-
uration file is discretization.cfg. It contains the following information:

[trajectory]

Trajectory file Path to the data file that contains the line coordinates.
Np Number of points to calculate on the discretized trajectory. Used

only when the source is continuous or when it is not moving.
Delta t Time step to calculate the discretized trajectory in the case of a

moving source.

[source]

Source type Source type: puff or continuous.
Species name Name of the species emitted by the source (only one species for

one line source).
[plume-source]

Rate Source rate (in mass per second) of the line source.
Velocity Velocity of the gas or aerosol emitted by the source (in m s−1).
Temperature Temperature of the gas or aerosol emitted by the source (Celsius

degrees).
Section Section of the source in m2.

[puff-source]

Quantity Total mass released on the line source (mass unit).
Source velocity Source velocity (in km h−1) (0. for non mobile sources).
tinit Release time for the first trajectory point (in s).

[output]

With comment Are comments written?
Source file Path to the data file where the list of sources will be written.

68 CHAPTER 3. PREPROCESSING

The associated data file (reference: line-emission.dat) contains the coordinates of the line
source to be discretized. The line source is a continuous line made of segments. Each segment
is defined by two end points. The data file contains three columns corresponding to the coordi-
nates (X, Y, Z in meters) of all end points. It contains at least the coordinates of two points.

This is an example of data file, defining a straight line emission between two points:

#X(m) Y(m) Z(m)

0. 0. 30.

20. 0. 30.

The output data file contains a list of point sources. All points have the same source data
and their coordinates have been calculated by the program. It is presented as a list of sections
named [source], each section containing the coordinates and other data for one point source.

3.9.2 Programs gaussian-deposition and gaussian-deposition aer

The aim of these programs is to calculate the scavenging coefficient and the deposition velocity of
the species. The program gaussian-deposition is used when all species are gaseous species, and
gaussian-deposition aer is used when some or all species are aerosol species. The input data
are meteorological data and species data, and the output file is a file containing meteorological
data and the scavenging coefficients and deposition velocities of all species. This file can be used
as input meteorological file for the programs plume and puff for gaseous species, or plume aer

and puff aer in the case of aerosol species.

Program gaussian-deposition

Configuration File The program gaussian-deposition is launched with one configuration
file and two input files. The configuration file contains the path to the two input files and to
the output file. The reference configuration file is gaussian-deposition.cfg. It contains the
following information:

[data]

Species Path to the data file that contains the species data.
Meteo Path to the data file that contains the meteorological data.

[scavenging]

Type Parameterization to be used to calculate the scavenging coeffi-
cients.

[deposition]

Type Parameterization to be used to calculate the deposition velocities.

[output]

With comment Are comments written in the output file? (put yes or no).
Output file Path to the file where the output data are written.

The parameterization type for the scavenging coefficient can be chosen between:

• none: the scavenging coefficient is set to 0. for all species

• constant: the scavenging coefficient is constant for one given species and entered in the

3.9. PREPROCESSING FOR GAUSSIAN MODELS 69

species file.

• belot: the scavenging coefficient is calculated with a Belot parameterization. In that case,
the input data are a rainfall rate given in the meteorological data file, and coefficients a

and b given for each species in the species file.

Concerning the deposition velocity, the type can be chosen between:

• none: the deposition velocity is set to 0. for all species

• constant: the deposition velocity is constant for one given species and is given in the
species file.

Input Files There are two input data files for this program: the meteorological data file (ref-
erence: meteo.dat) and the species file (reference: species.dat).

1. Meteorological data file: it contains as many sections as there are meteorological situations.
For each situation, meteorological data (temperature, wind . . .) are given as described
in section 5.1.5. They will be written unchanged in the output file which will be the me-
teorological data file of the main program. Other meteorological data might be needed,
depending on the chosen parameterization to compute scavenging coefficients and deposi-
tion velocities. Currently, the only parameterization that needs other information is the
Belot parameterization. If the type belot is chosen for the calculation of the scavenging
coefficient, a rainfall rate must be provided (in mm h−1). If the chosen type is constant

or none, the rainfall rate or other information can be provided but will be ignored by the
program. So, the meteorological data file finally looks like this:

[situation]

Temperature (Celsius degrees)

Temperature = 10.

Wind angle (degrees)

Wind_angle = 30.

Wind speed (m/s)

Wind = 3.0

#Inversion height (m)

Inversion_height = 1000.

Stability class

Stability = D

Rainfall rate (mm/hr)

Rainfall_rate = 1.

70 CHAPTER 3. PREPROCESSING

In this example, there is only one meteorological situation described. Others can be added
simply by adding similar sections [situation] at the end of the file.

2. Species data file: it contains several sections, but not all are needed for the preprocessing.
The needed sections are:

• [species] Contains the list of all species.

• [scavenging] Contains the list of the species for which scavenging occurs. The
scavenging coefficient of the others is set to 0.

• [deposition] Contains the list of the species for which deposition occurs. The
deposition velocity of the others is set to 0.

• [scavenging constant] This section is needed when the type of parameterization
chosen for the scavenging is constant. It contains the name of a species followed
by the value of its scavenging coefficient (in s−1). Only one species per line must be
provided. All species listed in the section [scavenging] must be present (the order
is not important), the others will be ignored.

• [scavenging belot] This section is needed when the type of parameterization cho-
sen for the scavenging is belot. It contains the name of a species followed by two
values corresponding to the coefficients a and b respectively in the Belot parameteri-
zation. Only one species per line must be provided. All species listed in the section
[scavenging] must be present, the others will be ignored.

• [deposition constant] This section is needed when the type of parameterization
chosen for the deposition is constant. It contains the name of a species followed
by the value of its deposition velocity (in m s−1). Only one species per line must be
provided. All species listed in the section [deposition] must be present, the others
will be ignored.

A species file might look like this:

[species]

Caesium Iodine

[scavenging]

Iodine Caesium

[deposition]

Caesium Iodine

[scavenging_constant]

Caesium: 1.e-4

Iodine: 1.e-4

3.9. PREPROCESSING FOR GAUSSIAN MODELS 71

[scavenging_belot]

Caesium: 2.8e-05 0.51

Iodine: 7e-05 0.69

[deposition_constant]

Caesium: 0.05e-2

Iodine: 0.5e-2

Output File The output data file contains as many sections as there are meteorological situ-
ations. Each section [situation] contains the temperature, wind angle, wind speed, inversion
height and stability class that are provided. In addition, it contains the list of all species followed
by their scavenging coefficient, and the list of all species followed by their deposition velocity.
It looks like this:

[situation]

Temperature (Celsius degrees)

Temperature = 10

Wind angle (degrees)

Wind_angle = 30.

Wind speed (m/s)

Wind = 3.

Inversion height (m)

Inversion_height = 1000

Stability class

Stability = D

Scavenging coefficient of the species (s^-1)

Scavenging_coefficient =

Caesium 6.36257e-05 Iodine 0.000212514

Deposition velocity of the species (m/s)

Deposition_velocity =

Caesium 0.0005 Iodine 0.005

Program gaussian-deposition aer

The program gaussian-deposition aer works the same way as the program
gaussian-deposition, except that there are some more information specific to the aerosol
species. The input and output files are the same as described in the section about
gaussian-deposition, so in this section we will only describe the data that are added to
the files described previously. One input file is needed in addition to the meteorological data

72 CHAPTER 3. PREPROCESSING

and species data files. It is the diameter file (reference: diameter.dat) which contains the
diameters of the aerosol particles.

Configuration File In the configuration file, the following information are added:

[data]

Diameter Path to the data file that contains the particle diameters.

[scavenging]

Type aer Parameterization to be used to calculate the scavenging coefficients
for aerosol species.

Value Values to be used for a Slinn parameterization (choose between
best estimate and conservative.

[deposition]

Type aer Parameterization to be used to calculate the deposition velocities
for aerosol species.

The parameterization type for the scavenging coefficient of aerosol species can be chosen
between:

• none: the scavenging coefficient is set to 0. for all aerosol species

• constant: the scavenging coefficient is constant for one given diameter and entered in the
species file.

• slinn: the scavenging coefficient is calculated with a Slinn parameterization. In that case,
the only input data that are used are the rainfall rate and the particle diameters.

Concerning the deposition velocity, the type can be chosen between:

• none: the deposition velocity is set to 0. for all species

• constant: the diffusive part of the deposition velocity is constant for one given diameter
and entered in the species file. The gravitational settling velocity is calculated for each
particle, given the density and the diameter (provided in the species file) and the pressure
and temperature (provided in the meteorological data file).

Input Files

1. Meteorological data file: it is the same as the one for gaussian-deposition. If the pa-
rameterization type for the deposition velocity calculation is constant, the pressure must
be provided (in Pa).

2. Diameter file: it contains the list of particle diameters (in µm). The first number is the
diameter of index 0, the second of index 1, and so on. This is an example of diameter file:

#Diameter (micrometer)

[diameter]

0.1

1.

3.9. PREPROCESSING FOR GAUSSIAN MODELS 73

The diameter of index 0 corresponds to the value 0.1 µm, the diameter of index 1 to the
value 1. µm and so on. When referring to a given diameter in the other data files, one
has to give the corresponding index. Note that there is only one diameter file for all
aerosol species. Therefore all particulate species are assumed to have the same diameter
distribution. The diameter file can also be the main configuration file. In that case, the
section [diameter] is simply added to the main configuration file.

3. Species file: it is the same as described before, but the sections described for
gaussian-deposition concern only gaseous species. All data concerning aerosol species
are added in the following sections:

• [aerosol species] Contains the list of all aerosol species.

• [scavenging constant aer] This section is needed when the type of parameteri-
zation chosen for the scavenging for aerosol species is constant. In that case, the
scavenging coefficient is assumed to be constant for one particle diameter. So the
section contains the index of one diameter followed by the corresponding value of the
scavenging coefficient (in s−1). Only one diameter per line must be provided.

• [deposition constant aer]This section is needed when the type of parameteriza-
tion chosen for the deposition of aerosol species is constant. It contains the index
of a diameter followed by the value of its deposition velocity (in m s−1). Only one
diameter per line must be provided.

• [density aer] It contains the density of the aerosol species. That is, the name of
each aerosol species followed by the corresponding density (in kg m−3). Only one
species per line must be provided. This section is needed in order to calculate the
gravitational settling velocity of a particle. The calculated deposition velocity of
one species of a given diameter is therefore a combination of the diffusive part given
in the section [deposition constant aer] and the gravitational settling velocity
calculated by the program.

Note that while some gaseous species might not be concerned by scavenging or deposition,
the loss processes are assumed to occur for all aerosol species. Therefore, there is no need
of a section containing the species for which scavenging or deposition occur in the case
of aerosol species, as it is the case for gaseous species. Here is an example of species file
containing the sections dedicated to aerosol species:

[aerosol_species]

aer1

aer2

aer3

[scavenging_constant_aer]

Scavenging coefficient for aerosol species (Unit: seconds^(-1))

Depends on the diameter (first value: diameter index in file diameter.dat).

Only one diameter per line.

0: 1.e-4

74 CHAPTER 3. PREPROCESSING

1: 2.e-4

[deposition_constant_aer]

Dry deposition velocity (diffusive part) of the species (Unit: m/s)

Depends on the diameter

Only one diameter per line.

0: 0.05e-2

1: 0.5e-2

[density_aer]

Particle density (aerosol species) (kg/m^3)

Only one species per line.

aer1: 1.88

aer2: 1.

aer3: 4.93

Output File The output file is the same file as the one for gaussian-deposition, except
that the scavenging coefficients and deposition velocities of aerosol species are also written. One
coefficient corresponds to a given species of a given diameter. It is written as “species-name”-
”diameter-index” followed by the value of the corresponding scavenging coefficient (or deposition
velocity). The following example corresponds to a case with two gaseous species named “gas1”
and “gas2” and three aerosol species named “aer1”, “aer2” and “aer3”. The diameter file is the
same as displayed before, that is, contains two diameters. The output file looks like this:

[situation]

Temperature (Celsius degrees)

Temperature = 10

Pressure (Pa)

Pressure = 101325

Wind angle (degrees)

Wind_angle = 30

Wind speed (m/s)

Wind = 3

Inversion height (m)

Inversion_height = 1000

Stability class

Stability = D

3.9. PREPROCESSING FOR GAUSSIAN MODELS 75

Scavenging coefficient of the gaseous species (s^-1)

Scavenging_coefficient =

gas1 0.0001 gas2 0.0001

Deposition velocity of the gaseous species (m/s)

Deposition_velocity =

gas1 0.0005 gas2 0.005

Scavenging coefficient of the aerosol species (s^-1)

Scavenging_coefficient_aer =

aer1-0 5.95238e-05 aer1-1 5.95238e-05 aer2-0 5.95238e-05

aer2-1 5.95238e-05 aer3-0 5.95238e-05 aer3-1 5.95238e-05

Deposition velocity of the aerosol species (m/s)

Deposition_velocity_aer =

aer1-0 2.11708 aer1-1 6.69479 aer2-0 1.54404

aer2-1 4.88268 aer3-0 3.42833 aer3-1 10.8413

The value following “aer1-0” corresponds to the calculated coefficient for the species “aer1”
and the diameter of index 0, that is, in the case of our diameter file, the diameter equal to
0.1 µm. The value following “aer1-1” corresponds to the coefficient for the species “aer1” and
the diameter of index 1, that is, equal to 1 µm, and so on.

76 CHAPTER 3. PREPROCESSING

Chapter 4

Drivers

4.1 BaseDriver

BaseDriver is configured with a file which contains the displaying options for the simulation.

[display]

Show iterations If activated, each iteration is displayed on screen.
Show date If activated, the starting date of each iteration is displayed

on screen in format YYYY-MM-DD HH:II (notations from Sec-
tion 2.2.7).

4.2 PlumeDriver

It is the driver dedicated to the Gaussian plume model. The associated configuration file is
the same as the one for the BaseDriver, and it is usually part of the model configuration file
described in Section 5.1. The associated input data file describes the meteorological data (ref-
erence: gaussian-meteo.dat) for gaseous species and gaussian-meteo aer.dat for aerosol
and/or gaseous species. The meteorological data file contains the meteorological data that are
needed. It can be the output file of the preprocessing program gaussian-deposition.

The meteorological data file describes one or several meteorological situations. For each situ-
ation, the driver calls the model to calculate the concentrations, that is, the stationary solution
for the given meteorological situation. It is associated with two models: the GaussianPlume
model for gaseous species only (described in Section 5.1) and the GaussianPlume aer model
which is the same model for aerosol and/or gaseous species (see Section 5.2).

4.3 PuffDriver

It is the driver dedicated to the Gaussian puff model. The associated configuration file is the
same as the one for the BaseDriver, and it is usually part of the model configuration file described
in Section 5.3. The associated input data file describes the meteorological data. It is the same
file as for the plume model.

For each meteorological situation, the driver calculates the concentrations that depend on
time. That is, for a given situation, it makes a loop on time and calls the model at each time
step to calculate the current concentrations. It is associated with two models: the GaussianPuff
model for gaseous species only (described in Section 5.3) and the GaussianPuff aer model which
is the same model for aerosol and/or gaseous species (see Section 5.4).

77

78 CHAPTER 4. DRIVERS

4.4 StationaryDriver

This driver, as the Gaussian drivers presented before, is used to perform a simulation at local
scale, the only difference being that in that case an Eulerian model is used.

An additional section [stationary] is necessary in the configuration file:

[stationary]

Nt Number of stationary steps.
Delta t Time-step between stationary steps.

4.5 MonteCarloDriver

The Monte Carlo driver performs several simulations with perturbed input data. The input
data are perturbed by the PerturbationManager (see Section 4.11). The simulation outputs
are saved with the unit saver of type domain ensemble forecast (see Section 4.9.2). The
configuration file for this driver should contain:

[MonteCarlo]

Number ensemble The number of samples.

[perturbation management]

Configuration file Name of the file that contains perturbations configuration (see
Section 4.11 about PerturbationManager).

4.6 PlumeInGridDriver

Warning: This part is about a recent development in Polyphemus, that has not been fully
tested yet. The Plume in Grid model is present in this version for demonstration purposes, but
it is not stable yet.

The base files for Plume in Grid model are PlumeInGridDriver.hxx and PlumeInGridDriver.cxx.
Basically, in spite of its name, it is a model, but it can be used as a driver. The Plume in Grid
model uses both an Eulerian model and a Gaussian Puff model. It processes major point emis-
sions first with the Puff model, then feeds the puffs back to the Eulerian model when their size
is large enough. Apart from this special treatment of point sources, the Eulerian simulation is
performed as if BaseDriver were used. The Eulerian model can be, for example, Polair3dAerosol,
Polair3dChemistry, or CastorChemistry.

Use basic configuration files for the Eulerian model. The changes to make are:

• in the main configuration file, there is a new section named [gaussian] where the name
of a configuration file for the puff model has to be provided (field file gaussian).

• in the data configuration file, there is a new section [gaussian meteo] that provides more
meteorological fields than the ones used for Eulerian model. It consists in cloudiness and
solar radiation data that are used to compute Pasquill stability class. In case those fields
are not available, put whatever value you want for those fields and use the Doury param-
eterization for sigma, so that stability class will not be used.

4.7. DATA ASSIMILATION DRIVERS 79

• in the data configuration file, there is a new section [plume-in-grid] that provides the
file containing the sources to be treated with plume in grid model (field [file source].
It has the same form as a point source file.

Note that there is no point emission for the Eulerian model, since the source file is directly
read by the plume in grid model (it is the file provided in section [plume-in-grid] of the data
file). Hence, if you set the option With point emission to ”yes” and provide the same configu-
ration file for point source, the source file will be read and treated twice: once by the Eulerian
model and once by the Plume in Grid model.

In addition, the Gaussian puff model needs the usual configuration files. However, few of
their information are actually used, since most information are directly provided by the Plume
in Grid model.

The most important information given in puff.cfg is the time step Delta t. If it is larger
than the time step for the Eulerian model, it is considered equal to it. Otherwise, a number
N of iterations for the Gaussian model are performed at each iteration of the Eulerian model,
where:

N = int

[

∆tEulerian

∆tGaussian

]

(4.1)

You are strongly advised to use a time step for the Gaussian model smaller than the one for the
Eulerian model in order to perform several iterations of the Gaussian model. Other information
about the domain are still read but not used, except the land category that is used for Briggs
parameterization.

In addition, it also reads all options and parameterizations. However, for now, scavenging
and deposition cannot be used with Plume in Grid, so the corresponding options have to be set
to ”no”. Radioactive decay can be used. Note that there is no need to provide a meteorological
file or a source file, since those information are fed to the puff model by the Plume in Grid
model. The species file is still read. It is advised to use the same as the species file for Eulerian
model. Levels file and saver file are still read but not used.

4.7 Data Assimilation Drivers

4.7.1 AssimilationDriver

It is the base driver from which all data assimilation drivers are derived. Data assimilation is
the concept and methods that estimate model state from diverse available sources, e.g. model
simulations, observations and statistics information, aiming at and validated by a better pre-
diction. Data assimilation methods can roughly be catalogued into variational and sequential
ones. For the former the variational principle applies. The objective can be defined by the dis-
crepancy between model simulation and a block of observations, usually combined with a priori
background knowledge. This can be theorized and solved efficiently by optimal control theory
(FourDimVarDriver). The sequential methods make use of observations instantaneously. This is
a filtering process, and filter theory (linear or nonlinear) applies (OptimalInterpolationDriver,
EnKFDriver and RRSQRTDriver).

A typical data assimilation system consists of three components: model (physics), data
(observation), and assimilation algorithm. The data assimilation drivers organize model and

80 CHAPTER 4. DRIVERS

data to perform assimilations. The associated configuration file is an extension of that of the
model configuration file exemplified in Section 5.8. For data part, it has an additional section
[observation management],

[observation management]

Configuration file Path to the file containing the configuration of the ob-
servation management. In the distribution (directory
driver/example/assimilation/), choose between observa-
tion.cfg (to use observations) and observation-sim.cfg (to use
simulated observations).

The value of Configuration file can be set to observation.cfg if you use
GroundObservationManager (see Section 4.10.1) and to observation-sim.cfg if you use
SimObservationManager (see Section 4.10.2).

The data assimilation experiments are controlled by the following options.

[domain]

Nt Number of time steps for the whole simulation (assimilation and
prediction).

[data assimilation]

Nt assimilation Number of time steps for the assimilation period.

Nt is supposed to be greater than or equal to Nt assimilation. From time step #0 to time
step #Nt assimilation-1 , assimilation is performed; and from step #Nt assimilation to
step #Nt-1, prediction is performed.

In many cases such as data assimilation and ensemble prediction, perturbed model simu-
lations are needed. Perturbations are managed by PerturbationManager (see Section 4.11)
reading an additional section,

[perturbation management]

Configuration file Name of the file that contains perturbation configurations.

4.7.2 OptimalInterpolationDriver

It is the driver dedicated to data assimilation applications using optimal interpolation algorithm.
The optimal interpolation algorithm estimates model state status by minimizing the error vari-
ance of the estimation (called analysis in data assimilation terminology). It searches for a linear
combination between background state (model simulations) and the background departures. The
background departures are defined as the discrepancies between observations and background
state. It involves with observation managements (described in Section 4.10) and storage man-
agements of forecast and analysis results (see for instance Section 4.9.4). The background error
covariance matrix can be either diagonal or generated by Balgovind correlation functions (see
Section 5.8).

4.7.3 EnKFDriver

It is the driver dedicated to data assimilation applications using ensemble Kalman filter algo-
rithm. It consists of two steps: forecast and analysis. It differs from optimal interpolation in
that the background error covariance is flow-dependent and approximated by an ensemble of

4.7. DATA ASSIMILATION DRIVERS 81

perturbed model forecast. The algorithm parameters are set in section [EnKF].

[EnKF]

Number ensemble The number of samples in the ensemble.
With observation perturbation

If observations are perturbed for consistent statistics for analyzed
ensemble.

With positivity requirement

If positivity of the assimilated species concentrations is required.

The generation of the ensemble is detailed in PerturbationManager configurations (see Sec-
tion 4.11).

4.7.4 RRSQRTDriver

It is the driver dedicated to data assimilation applications using reduced rank square root
Kalman filter algorithm (RRSQRT). It consists of two steps: forecast and analysis. The back-
ground error covariance is flow-dependent and approximated by an explicit low rank represen-
tation. The algorithm parameters are set in section [RRSQRT].

[RRSQRT]

Number analysis mode The expected rank number (column number) of the square root
(mode matrix) of forecast error covariance matrix.

Number model mode The number of the columns of the square root of model error co-
variance matrix to be added to the mode matrix.

Number observation mode The number of the columns of the square root of observation error
covariance matrix to be added to the analyzed mode matrix.

Propagation option The option for the forecast of the columns of mode matrix. Only
finite difference is supported.

Finite difference perturbation

Perturbation coefficient for mode forecast using finite difference
method; set to 1.

Model perturbations are employed to generate the columns of the square root of model error
covariance matrix (see PerturbationManager configurations in Section 4.11).

4.7.5 FourDimVarDriver

It is the driver dedicated to data assimilation applications using four-dimensional variational as-
similation algorithm (4D-Var). The assimilation period is from time step 0 to Nt assimilation-1.
The optimal model state at initial time step is obtained by minimizing an objective function
which is the background departure plus discrepancy between model simulations and observations
during the assimilation period. The model is supposed to be perfect, thus no model error terms
are considered. The gradient of the objective function is calculated efficiently using adjoint
model of the underlying model. The algorithm parameters are set in section [4DVar].

[4DVar]

Display precision Display precision for optimization results.
Jb file Name of the file that saves background departure during optimiza-

tion.

82 CHAPTER 4. DRIVERS

Jo file Name of the file that saves observation discrepancy during opti-
mization.

Gradient norm file Name of the file that saves gradient norms during optimization.
With trajectory management If the trajectory of model integration is saved to disk for adjoint

integration.
Trajectory delta t Trajectory time step in seconds.
Trajectory file Name of the file that saves model trajectory.

The parameters for numerical optimization algorithm are set in section [optimizer]

[optimizer]

Type Type of optimization solver; only BFGS is supported.
Maximal iteration The number of the maximal iteration for numerical optimization.
Display iterations If the optimization results during iteration are displayed.

4.8 Drivers for the verification of adjoint coding

The three drivers AdjointDriver, GradientDriver, Gradient4DVarDriver are dedicated to
the verifications of adjoint model. The gradient of a given objective function calculated by
adjoint model is compared with the gradient calculated by finite difference. The following ratio
is checked

ρ =
J(x + αh) − J(x)

α 〈∇xJ, h〉

where J is the objective function, x is the control variable, h is the perturbation direction, α is
the perturbation coefficient, and ∇xJ is the gradient calculated by adjoint model, < > denotes
inner product. With α → 0, the ratio ρ is supposed to approach to 1 with high precision, then
becomes unstable due to round-off errors. In practice, α = D−i, i ∈ [m, m + 1, . . . , n], where D

is the decreasing factor (typical values are 2 and 10), m is the integer for largest perturbation
(typical value is 0), and n is the integer for smallest perturbation.

4.8.1 AdjointDriver

The objective function is chosen to be the model output of a given grid point in model domain
with respect to initial model status. The corresponding gradient can therefore be interpreted
as the sensitivity. This driver aims at the verification of adjoint code obtained by automatic
differentiation of underlying model code using O∂yssée (version 1.7). The following options in
section [adjoint] provide flexible control of the verification.

[adjoint]

Point species name Species name of the selected point in model domain for sensitivity
calculation.

Point nx x-index of the selected point for sensitivity calculation.
Point ny y-index of the selected point for sensitivity calculation.
Point nz z-index of the selected point for sensitivity calculation.
Norm perturbation vector

Norm of the initial perturbation vector.
With random perturbation

With random directions for the perturbation?

4.9. OUTPUT SAVERS 83

Decreasing root Decreasing factor of the sequence of perturbation vectors (D).
Start index Index for the calculation of the first decreasing ratio (m).
End index Index for the calculation of the last decreasing ratio (n).
With left finite difference checking

Checking left-side finite difference results?
Display sensitivity Display sensitivity results for the decreasing perturbation se-

quences?

Option With trajectory management, Trajectory delta t, Trajectory file are similar to
those for 4DVar in Section 4.7.5.

4.8.2 GradientDriver

The objective function is chosen to be the norm of the difference between model
simulations and synthetic observations. This driver aims at the verification of the
backward integration algorithm of adjoint model for gradient calculations. Options
Norm perturbation vector, With random perturbation, Decreasing root, Start index,
End index, and With left finite difference checking in section [adjoint] have the same
meanings as those in Section 4.8.1. Option Display cost indicates whether the values of the
objective function are displayed when perturbation decreases accordingly.

4.8.3 Gradient4DVarDriver

The objective function is chosen to be the observation discrepancy in the 4DVar objective
function. This driver aims at the verification of the adjoint code of observation operator. All
the options for this driver are same as those in Section 4.8.2

4.9 Output Savers

4.9.1 BaseOutputSaver

The saver BaseOutputSaver is configured with a file that contains one or several sections
[save]. Each section is associated with one element of a list of output-saver units managed by
BaseOutputSaver.

According to the value of Type in every section, different saver units are called. Note however
that a group attribute can be set in BaseOutputSaver (the default being all, and the other
choices being forecast and analysis) and that only savers with the same group are called.

Some parameters must be provided for any kind of savers:

[save]

Species Chemical species to be saved. If it is set to all, concentrations for
all species are saved.

Date beg The date from which the concentrations are saved. If concen-
trations are averaged, the first step at which concentrations are
actually saved if not Date beg, but Date beg plus the number of
steps over which concentrations are averaged. If the value - 1 is
supplied, Date beg is set at the start of the simulation.

Date end The last date at which concentrations may be saved. If the value
- 1 is supplied, Date end is set at the end of the simulation.

Interval length The number of steps between saves.

84 CHAPTER 4. DRIVERS

Type The type of saver, see Table 4.13 for details.
Output file The full path of output files, in which &f will be replaced by the

name of the chemical species. Note that the directory in which the
files are written must exist before the simulation is started.

Note that Species, Date beg, Date end, Interval length must appear before Type. After
Type, put additional options relevant for the chosen output saver.

Here is a list of all types of saver units available at the moment:

Table 4.13: Types of saver

domain To save entire vertical layers.
domain aer The same as domain but for aerosol species.
domain assimilation The same as domain but for data assimilation applications.
nesting To perform nested simulations.
nesting aer The same as nesting but for aerosol species.
subdomain To save concentrations only for an horizontal subdomain.
subdomain aer The same as subdomain but for aerosol species.
wet deposition To save entire wet deposition fluxes.
dry deposition To save entire dry deposition fluxes.
wet deposition aer The same as wet deposition but for aerosol species.
dry deposition aer The same as dry deposition but for aerosol species.
backup The backup gas species in order to restart.
backup aer The same as backup but for aerosol species.

4.9.2 SaverUnitDomain and SaverUnitDomain aer

The output saver SaverUnitDomain defines an output-saver unit when Type is set to either
“domain”, or “domain ensemble forecast” and “domain ensemble analysis” in case of ensemble
applications. This output saver requires additional parameters presented in the table below.

[save]

Levels A list of integers that determines the vertical layers to be saved.
Note that 0 is the first layer. Remember that the heights you
specified in the file levels.dat are those of the level interfaces,
while concentration are saved in the middle of each levels.

Averaged Should concentrations be averaged over Interval length? If not,
instantaneous concentrations are saved.

Initial concentration Should initial concentrations be saved? This option is only avail-
able if concentrations are not averaged.

For aerosol species, the saver should be SaverUnitDomain aer and the Type “domain aer”.
The section [save] is very similar to the one for gaseous species, except that you have to specify
for which diameters the concentrations are saved. Hence, the list of species to be saved looks
like this:

Species: aer1_{0} aer 1_{2} aer2_{0-1}

In that case, the species named “aer1” is to be saved for the diameter of indices 0 and 2,
and “aer2” for the diameters of indices 0 and 1.

4.9. OUTPUT SAVERS 85

In Output file, &f will be replaced by the species name and &n by the bin index. You can
use any symbol which is not a delimiter (or even nothing) to separate the species name from
the bin index, even though &f &n.bin is the advised form.

If Species is set to “all” the concentrations will be saved for all aerosol species and for all
diameters.

4.9.3 SaverUnitSubdomain and SaverUnitSubdomain aer

These saver units allow the user to save concentrations only over an horizontal subdomain (for
example, if they perform a simulation over the whole of Europe but only want the concentrations
over one country or region). Their Type is “subdomain” and “subdomain aer” respectively. The
user must provide between which indices for x and y they want to save concentrations. The
specific parameters for these saver units are:

[save]

Levels A list of integers that determines the vertical layers to be saved.
Note that 0 is the first layer. Remember that the heights you
specified in the file levels.dat are those of the level interfaces,
while concentration are saved in the middle of each levels.

Averaged Should concentrations be averaged over Interval length? If not,
instantaneous concentrations are saved.

Initial concentration Should initial concentrations be saved? This option is only avail-
able if concentrations are not averaged.

i min Minimum latitude index of the subdomain.
i max Maximum latitude index of the subdomain.
j min Minimum longitude index of the subdomain.
j max Maximum longitude index of the subdomain.

4.9.4 SaverUnitDomain assimilation

The output saver SaverUnitDomain assimilation defines an output-saver unit similar to
SaverUnitDomain, except that it requires additional parameters presented in the table below.

[save]

Date file The full path name of the file that stores the date sequences of the
assimilation results.

The group attribute of the output saver SaverUnitDomain assimilation is set to “analy-
sis”, whereas the group attributes of other saver units are set to “forecast” by default. Its Type
is “domain assimilation”.

4.9.5 SaverUnitDomain prediction

The output saver SaverUnitDomain prediction defines an output-saver unit similar to
SaverUnitDomain. The group attribute of the output saver SaverUnitDomain prediction

is set to “prediction”. Its Type is “domain prediction”. It works in a similar way to
SaverUnitDomain assimilation, except that it is designed for the storage of model predic-
tions starting from analyzed model state at the end of the assimilation period.

86 CHAPTER 4. DRIVERS

4.9.6 SaverUnitNesting and SaverUnitNesting aer

The saver units SaverUnitNesting and SaverUnitNesting aer are used to perform nested
simulations. That means that the results of a first simulation on a large domain are interpolated
and saved at the boundary of a subdomain and are then used as boundary conditions for a
second simulation on the subdomain.

The two simulations are quite “normal” except that:

• For the first one: additional concentrations have to be saved using SaverUnitNesting

and/or SaverUnitNesting aer.

• For the second one: boundary conditions from the first simulation have to be provided
the usual way in polair3d-data.cfg.

Refer to the files in driver/example/nesting for concrete examples. Files ending with
“-nesting” are for the first simulation and files ending with “-nested” are for the second one.

If the saver unit is of Type “nesting” or “nesting aer”, the additional parameters needed in
the section [save] are presented in the table below.

[save]

x min Origin of the subdomain along x.
Delta x Step along x for the subdomain.
Nx Number of points along x for the subdomain.
y min Origin of the subdomain along y.
Delta y Step along y for the subdomain.
Ny Number of points along y for the subdomain.
levels File giving the interfaces of the layers for the subdomain.
Nz Number of layers in the subdomain.

In Output file &f and &n are replaced as for SaverUnitDomain or SaverUnitDomain aer

and &c is replaced by the direction along which the boundary conditions were interpolated (that
means that &c is replaced by x, y or z).

4.9.7 SaverUnitPoint and SaverUnitPoint aer

The saver units SaverUnitPoint and SaverUnitPoint aer are used to save concentrations at a
list of given points. There are two possible types: indices list saves concentrations at given
indices in the simulation grid (provided in the main configuration file in section [domain]) and
coordinates list saves concentrations at given (cartesian) coordinates, and is available for
Gaussian models only. In case the saver is of type coordinates list the simulation grid is still
read but is not used, as concentrations are computed directly at each point of interest.

The list of points where concentrations are to be saved has to be specified in the section
[save] of the saver configuration file. It has to be written just after the line containing the field
Output file. The list begins with the field Indices in case the saver type is indices list

and Coordinates if the type is coordinates list. In both cases, the list must end with a line
containing the field Point file, which is used to specify a file name where the list of all points
where concentrations are saved is to be written during the simulation. This looks like:

Type: indices_list

Levels: 0 2

4.9. OUTPUT SAVERS 87

Output_file: <Results>/&f.bin

Indices:

0 0

5 15

20 25

30 30

Point_file: <Results>/point.txt

One line corresponds to one point. There can be either two or three indices. In case there
are two indices on the line, the first one corresponds to index along y, the second one to the
index along x, and concentrations are saved at this point for each vertical level specified in the
field Levels. In the previous example, the file <Results>/point.txt will be created during the
simulation and look like:

z y x

0 0 0

2 0 0

0 5 15

2 5 15

0 20 25

2 20 25

0 30 30

2 30 30

In case there are three indices on a line, concentrations are saved only at the specified point,
no matter what the field Levels contains. The first value on the line corresponds to index along
z, the second to index along y and the third to index along x. Note that lines containing two
or three values can be entered in any order. The output binary file containing concentrations
will simply follow the order given in the file <Results>/point.txt for each time step. It means
that the resulting binary file will be of size Nt ×Npoint where Nt is the number of time steps to
be saved, and Npoint is the number of points where concentrations are saved.

To save coordinates instead of indices, one simply has to change the type to coordinates list,
to add the field Levels coordinates to specified values of z where concentrations are to be
saved, and to write the field Coordinates instead of Indices. The field Levels is still read but
not used. Here is an example:

Levels: 0

Levels_coordinates: 1.5

Output_file: <Results>/&f.bin

Coordinates:

470.0 535.0

88 CHAPTER 4. DRIVERS

470.7 535.0

470.5 535.1

1.5 470.8 535.4

2.5 470.8 535.4

4.5 470.8 535.4

7.5 470.8 535.4

10.5 470.8 535.4

13.5 470.8 535.4

17.5 470.8 535.4

Point_file: <Results>/point.txt

Note that coordinates are entered in meters, first z, then y, then x, or just y then x. In
the previous example, every point for which only two coordinates are entered is saved at 1.5
meters above ground. For one point, one wished to save concentrations at different heights above
ground, so heights have been explicitly written.

When dealing with aerosol species, one just has to put indices list aer or coordinates list aer

instead of indices list or coordinates list respectively.

4.9.8 SaverUnitWetDeposition and SaverUnitDryDeposition

The output savers SaverUnitWetDeposition and SaverUnitDryDeposition define output-saver
units when Type is set to “wet deposition” or “dry deposition” and both require additional
parameters presented in the table below.

[save]

Averaged Should concentrations be averaged over Interval length? If not,
instantaneous concentrations are saved.

Initial concentration Should initial concentrations be saved? This option is only avail-
able if concentrations are not averaged.

If Species is set to “all” the deposition fluxes will be saved for all scavenged or dry deposited
species.

4.9.9 SaverUnitWetDeposition aer and SaverUnitDryDeposition aer

The output savers SaverUnitWetDeposition aer and SaverUnitDryDeposition aer define
output-saver units when Type is set to “wet deposition aer” or “dry deposition aer”. The sec-
tion [save] is very similar to the one for gaseous species, except that you have to specify for
which diameters the deposition fluxes are saved. Hence, the list of species to be saved looks like
this:

Species: aer1_{0} aer 1_{2} aer2_{0-1}

In that case, the species named “aer1” is to be saved for the diameter of indices 0 and 2,
and “aer2” for the diameters of indices 0 and 1.

In Output file, &f will be replaced by the species name and &n by the bin index. You can
use any symbol which is not a delimiter (or even nothing) to separate the species name from
the bin index, even though &f &n.bin is the advised form.

If Species is set to “all” the deposition fluxes will be saved for all aerosol species and for
all scavenged or dry deposited diameters.

4.9. OUTPUT SAVERS 89

4.9.10 SaverUnitBackup and SaverUnitBackup aer

The output savers SaverUnitBackup and SaverUnitBackup aer are respectively similar to
SaverUnitDomain and SaverUnitDomain aer output-savers: they save gas and aerosol con-
centrations over the entire domain. The difference is that latter output-savers are intended for
post-treatment whereas formers for eventually be able to restart a simulation as if it had not
stopped.

Therefore, all gas and aerosol concentrations are saved and not averaged, only one simulation
time step is saved and each backup overwrites the latter one. A “date” file stores the current
date and iteration of backup files.

All backup files are buffered in files with extension “.buf”. These buffers are only intended
for the case the simulation breaks during the backup saving. In this case the “date” file will
contain the message “!! BACKUP SAVING NOT FINISHED !!” which means that buffer files
have to be used instead of backup ones. These buffer files are only needed at run time and are
removed at the end of simulation.

The output savers SaverUnitBackup and SaverUnitBackup aer are configured with a [save]
section:

[save]

Type: backup

Interval_length: 10

Output_file: backup/&f.bin

Date_file: backup/date_backup

[save]

Type: backup_aer

Interval_length: 10

Output_file: backup/&f_&n.bin

Date_file: backup/date_backup_aer

The backup output-savers are selected by setting type to backup or backup aer. The number
of time steps between two backups is set in Interval length. In order to be able to correctly
restart a simulation this number has to be large enough compared to that of other output-savers.
Furthermore the backup time must overlap the save time of other output-savers. For example
if a simulation makes averaged savings every six time steps, the backup Interval length has
to be a multiple of six and at least six.

How to restart? Open the “date” file, pick up the backup date and replace the beginning
date of polair3d.cfg main configuration file with it. Then go into polair3d-data.cfg and
change the initial condition and initial condition aer sections so that they points to the
backup files. Modify the [save] sections in order to keep previous output files.

Remark A restart must give exactly the same results as if the simulation had not stopped.
Nevertheless vector concentrations are stored in memory in double precision whereas backups are
written on disk in simple precision so that on restart you cannot avoid roundoff errors between
simple and double precision.

90 CHAPTER 4. DRIVERS

4.10 Observation Managers

The observation managers deal with available observational data at different locations and dates.
These managers are designed to prepare for applications related to observation treatments,
especially for data assimilation. The observation operator are implemented for the mapping
from observation space into model space. For a given date, these managers retrieve observation
data values and the corresponding statistical information, e.g. observational error covariances.

4.10.1 GroundObservationManager

The GroundObservationManager is dedicated to ground observation managements.

[general]

Species Name of observed species. The current version deals with only one
observed species.

Error variance Error variance for the observed species.
With spatial interpolation Should observations be interpolated at adjacent model grid points?
With perturbation Should the observation be perturbed?
Perturbation scale If With perturbation is set to “yes”, gives the amplitude of the

perturbation.

[stations]

Nstations Total number of stations.
Stations file File containing station information (code, name, latitude, longi-

tude and altitude). &s in path names is replaced by species name
specified in [general] section.

Input directory Directory where the observations are stored.

4.10.2 SimObservationManager

The SimObservationManager is dedicated to synthetic observation managements. Library
NewRan is needed for random number generations. Note that NewRan is not included in the
distribution, and it is the user’s duty to install NewRan. The associated configuration file is an
extension of that of GroundObservationManager. The additional sections are mainly for data
specifications of the binary data files.

[simulation manager]

Simulation option Specifies how observations are provided. The current version deals
only with observations at ground stations.

Input file Files containing the observation data. They usually are generated
by certain reference run of Polair3D. &s in path names is replaced
by species name.

Date min Starting date for the simulation results in data files.
Delta t Time step in seconds for the simulation results in data files.
Levels Levels for the simulated data in files.
Initial concentration Flag that indicates whether initial concentrations are included in

data file.

4.11. PERTURBATION MANAGER 91

4.11 Perturbation Manager

The PerturbationManager is dedicated to perturbation managements. It reads the perturbation
configurations, and performs perturbations. The concerning fields are then updated according to
perturbation results for new model simulations in diverse applications such as data assimilation
and ensemble predictions. Library NewRan is needed for random number generations.

The perturbation fields are defined in configuration file of which the name can be read from
section [perturbation management] in the driver configuration file.

[general]

Fields Perturbation field list that depends on species, e.g. DepositionVe-
locity, PhotolysisRate, SurfaceEmission, and BoundaryCondition.

Rand seed Seed assignment for NewRan library, either a given seed number
(in]0, 1[), or name of the directory that contains NewRan seed
files, or a random seed number (in]0, 1[) that depends on the
current CPU time.

Field maximum spread Every random number for field perturbations cannot exceed the
mean plus or minus ’Field maximum spread’ times the standard
deviation.

Observation maximum spread Every random number for observation perturbations cannot exceed
the mean plus or minus ’Observation maximum spread’ times the
standard deviation.

For fields listed in section [AdditionalField] e.g. Attenuation and
VerticalDiffusionCoefficient, the perturbations do not depend on species. For each
additional field, or each species of species-dependent fields, the perturbation is performed
according to lognormal (LN) or normal (N) law with given standard derivation. The probability
distribution types are listed in the PDF column, and the standard derivations are listed in the
Parameter column. Sometimes there are two additional columns for species-dependent fields
indicating correlated species, and correlation coefficient. The correlation coefficients can only
be set to 1.

92 CHAPTER 4. DRIVERS

Chapter 5

Models

There are three major types of models: Gaussian models (see Section 5.1, 5.2, 5.3 and 5.4),
Polair3D models (see Section 5.5, 5.6, and 5.7) and Castor models (see Section 5.9). All variants
of a model have the same principles but can deal with various applications and phenomena.

Polair3D models were the first implemented in Polyphemus. They allow, as well as Castor
models, to compute the advection and diffusion of pollutants at a large scale and can integrate
various additional phenomena (such as photochemical chemistry or deposition). Gaussian mod-
els have been added to perform simulation at a local scale of the effect of a continuous (plume)
or instantaneous (puff) source of pollutant.

As for now, Castor models only deal with gaseous species, while the other models deal with
gaseous or aerosol species.

5.1 GaussianPlume

Model GaussianPlume is the Gaussian plume model for gaseous species only. The associated pro-
gram to be run is plume and it is configured with one configuration file (plume.cfg) and four data
files (plume-source.dat, plume-level.dat, gaussian-meteo.dat and gaussian-species.dat).
The configuration file provides the paths to the four other files. Basically, given a series of con-
tinuous point sources, it calculates the concentration of each species along a specified grid. There
are several output files, one for each species, that are binary files. The way results are saved is
described in an additional configuration file which corresponds to the file described in Section 4.9
(reference: plume-saver.cfg).

In these configuration files, there are entries that are not relevant for the Gaussian model but
that must be provided anyway. In descriptions of configuration files (below), they are described
as irrelevant.

5.1.1 Configuration File: plume.cfg

[domain]

Date min Irrelevant. Provide a date.
Delta t Irrelevant. Provide any number.
Nt Irrelevant. Provide an integer.
x min Abscissa in meter of the center of the lower-left cell.
Delta x Step length along x (in m).
Nx Number of cells along x (integer).
y min Ordinate in meter of the center of the lower-left cell.

93

94 CHAPTER 5. MODELS

Delta y Step length along y (in m).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels heights.
Land category Land category (choose between rural and urban). Relevant only

when standard deviations are computed with Briggs parameteri-
zation.

Time Choose whether it is nighttime (night) or daytime (day). Rel-
evant only when there is biological decay, or when Doury sigma
parameterization is used.

Species Path to the file that defines involved species.

[gaussian]

With plume rise Is plume rise taken into account?
With radioactive decay Is radioactive decay taken into account?
With biological decay Is biological decay taken into account?
With scavenging Is scavenging taken into account?
With dry deposition Is dry deposition taken into account?
Sigma parameterization Parameterization used to compute standard deviations (Briggs

for Briggs parameterization, Doury for Doury parameterization,
and similarity theory for a parameterization based on similarity
theory).

File meteo Path to the file containing the meteorological data.
File source Path to the file that describes the sources.

[deposition]

Deposition model Model used to take dry deposition into account (Chamberlain for
Chamberlain model, Overcamp for Overcamp model).

Nchamberlain Number of points to calculate the Chamberlain integral (integer).
Relevant only when dry deposition with Chamberlain model is
taken into account.

[output]

Configuration file Path to the configuration for the output saver.

Note: The Chamberlain integral for the calculation of dry deposition is discretized and approx-
imated as a sum. The integer that is provided corresponds to the number of terms of the sum
in the plume model. In the puff model, it is incremented at each time step, so as to have a
number of points consistent with the range of the integral (that is, not to have too many points
to discretize an integral whose range is very small).

5.1.2 Source Description: plume-source.dat

Sources are described in a single configuration file containing as many sections as there are
sources. Each section named [source] is associated with a new source. Each section contains
the following information: (1) the emission rate (in mass per seconds – the mass unit does
not matter: the model will stick to it), (2) the velocity of emitted pollutants (m s−1), (3) the
temperature of pollutants when emitted (oC), (4) the section area (in m2) of the source (most
likely a stack), (5) the abscissa of the source (m), (6) the ordinate of the source (m), (7) the

5.1. GAUSSIANPLUME 95

height of the source (m), and (8) the species that is emitted.
A typical source file looks like this:

[source]

Source coordinates (meters)

Abscissa: 100.

Ordinate: 100.

Altitude: 0.5

Species name

Species_name: Iodine

Source rate (mass/s)

Rate = 56.5

Source velocity (m/s)

Velocity = 10.1

Source temperature (Celsius degrees)

Temperature = 60.

Source section (m^2)

Section = 5.725

In this example, only one section is provided, but other sources may be added simply by
adding the corresponding sections at the end of the file. One species may have several sources.
The source file can contain a list of point sources provided by the user or a discretized line
source. In that case, it corresponds to the output file of the discretization preprocessing program
discretization.

5.1.3 Vertical Levels: plume-level.dat

Vertical levels are defined in a single data file. They are defined by their interfaces. This
means that the file contains Nz+1 heights, where Nz is the number of levels specified in the main
configuration file. The concentrations are computed at layers mid-points.

5.1.4 Species: gaussian-species.dat

Species are listed in the section [species] of a data file (the same as the species data file used
in the preprocessing program gaussian-deposition, see Section 3.9.2). When radioactive or
biological decay is taken into account, a section containing the half-life times of the species has
to be provided. The section [half life] contains the list of all species followed by their half-life
time in days for radioactive decay (put 0. in the case of non-radioactive species). Provide only
one species per line. The section [half life time] contains two values following each species
name, the first corresponding to its biological half-life time (in s) during daytime and the second
to the value during nighttime (put 0. in the case of non biological species). Here is an example:

[species]

List of the species

Caesium Iodine bio1

[half_life]

96 CHAPTER 5. MODELS

Half-life of the species (Unit: days)

0 coresponds to non-radioactive species

Caesium: 1.1e4

Iodine: 8.04

bio1: 0.

[half_life_time]

Half-life of the species (Unit: seconds)

First value: day, second value: night

0 corresponds to non-radioactive species.

Caesium: 0. 0.

Iodine: 0. 0.

bio1: 1000 500

In that case we have two radioactive species, “Caesium” and “Iodine”, and one biological species,
“bio1”.

If scavenging is taken into account, sections [scavenging] and [scavenging constant]

must be added. The section [scavenging] contains the name of all species for which scavenging
occur and [scavenging constant] their constants in s−1.

5.1.5 Meteorological data file: gaussian-meteo.dat

This file contains basic meteorological information needed to run Gaussian models. In case there
are scavenging and deposition, it is the output file of preprocessing program gaussian-deposition

described in Section 3.9.2. Information that are always needed are:

• Temperature (◦C)

• Wind angle (◦ from x axis)

• Wind speed (m s−1)

• Inversion height (m)

These information are provided inside a section [situation], and the meteorological data
file contains as many sections are there are situations. If the inversion height is set to 0., it is
not taken into account. Otherwise, reflections on the inversion layer are performed. This value
can be set equal to the boundary layer height, if known, during day and to 0. during night. It
can also be set to 0. all the time if no other value is known.

[situation]

Temperature (Celsius degrees)

Temperature = 15

Wind angle (degrees)

Wind_angle = -100

Wind speed (m/s)

5.2. GAUSSIANPLUME AER 97

Wind = 0.5

Inversion height (m)

Inversion_height = 1000

In case the Briggs parameterization for standard deviation is used, a stability class between
’A’ (very unstable) and ’F’ (very stable) has to be provided.

Stability class

Stability = A

In case the standard deviations are computed with similarity theory, a lot more information
have to be provided:

• Boundary layer height (m)

• Friction velocity (m s−1)

• Convective velocity (m s−1)

• Monin-Obukhov length (m)

• Coriolis parameter (s−1)

If not known, the Coriolis parameter can be set to 10−4s−1.

[situation]

Boundary layer height (m)

Boundary_height = 500.0

Friction velocity (m/s)

Friction_velocity = 0.37

Convective velocity (m/s)

Convective_velocity = -0.81

Monin Obukhov Length (m)

LMO = 120.0

Coriolis parameter (/s)

Coriolis = 1.4e-04

5.2 GaussianPlume aer

It is the Gaussian plume model for aerosol species. The corresponding program is plume aer.
It can be run when there are aerosol species only, or both aerosol and gaseous species. It
takes the same input files as the Gaussian plume model, except that they contain in addition
some sections dedicated to aerosol species. It takes in addition another input file that describes
the diameters of particles (file diameter.dat already described in Section 3.9.2). The output
files are binary files, one for each gaseous species and one for each couple (aerosol species,
diameter). The way results are saved is described in an additional configuration file (reference:
plume-saver aer.cfg) described in Section 4.9.

98 CHAPTER 5. MODELS

5.2.1 Configuration File: plume aer.cfg

It is exactly the same file as the configuration file described in Section 5.1. The only data that
may differ are the paths to the input files.

5.2.2 Source Description: plume-source aer.dat

It is the same file as the source file for gaseous species, except that obviously some (or all) emitted
species will be particulate species. The corresponding sections are named [aerosol source].

5.2.3 Vertical Levels: plume-level.dat

It is the same file as in Section 5.1.

5.2.4 Species: gaussian-species aer.dat

The section [species] lists the gaseous species, and the section [aerosol species] lists the
aerosol species. In the case of radioactive or biological decay, the sections are the same as
described in Section 5.1 and contain the half-life times of both gaseous and aerosol species.

5.2.5 Diameters: diameter.dat

See Section 3.9.2.

5.2.6 Meteorological data: gaussian-meteo.dat

See Section 5.1.5.

5.3 GaussianPuff

Model GaussianPuff is the Gaussian puff model for gaseous species only. The associated pro-
gram to be run is puff and it is configured with one configuration file (puff.cfg) and four data
files (puff.dat, puff-level.dat, gaussian-meteo.dat and gaussian-species.dat). The
configuration file provides the paths to the four other files. Basically, given a series of instan-
taneous puffs emitted at different times, it calculates the concentration of each species along a
specified grid. There are several output files, one for each species, that are binary files. (same
as in the Gaussian plume model, and fully described in Section 4.9).

5.3.1 Configuration File: puff.cfg

[display]

Show date Irrelevant. Provide any Boolean.

[domain]

Date min Irrelevant. Provide any date (see Section 2.2.7).
Delta t Time step of the simulation (in seconds).
Nt Number of time steps (integer).
x min Abscissa in meter of the center of the lower-left cell.
Delta x Step length along x (in m).
Nx Number of cells along x (integer).

5.3. GAUSSIANPUFF 99

y min Ordinate in meter of the center of the lower-left cell.
Delta y Step length along y (in m).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels heights.
Land category Land category (choose between rural and urban).
Time Choose whether it is nighttime (night) or daytime (day). Relevant

only when there is biological decay.
Species Path to the file that defines involved species.

[gaussian]

With radioactive decay Is radioactive decay taken into account?
With biological decay Is biological decay taken into account?
With scavenging Is scavenging taken into account?
With dry deposition Is dry deposition taken into account?
Sigma parameterization Parameterization used to compute standard deviations (Briggs

for Briggs parameterization, Doury for Doury parameterization).
File meteo Path to the file containing the meteorological data.
File puff Path to the file that contains the puff data.

[deposition]

Deposition model Model used to take dry deposition into account (Chamberlain for
Chamberlain model, Overcamp for Overcamp model)

Nchamberlain Number of points to calculate the Chamberlain integral (integer).
Relevant only when dry deposition with Chamberlain model is
taken into account.

[output]

Configuration file Path to the configuration for the output saver.

Note: Contrary to the Gaussian plume model, only two parameterizations to compute standard
deviations are currently available: Doury and Briggs models.

5.3.2 Puff Description: puff.dat

Puffs are described in a single configuration file containing as many sections as there are puffs.
Each section named [source] is associated with a new source. Each section contains the
following information: (1) the time when the puff is released (s) (from the beginning of the
simulation) (2) the total mass emitted (in mass unit – the mass unit does not matter: the model
will stick to it),(3) the abscissa of the point of emission (m), (4) the ordinate of the point of
emission (m), (5) the height of the point of emission (m), and (6) the species that is emitted.

[source]

Source coordinates (meters)

Abscissa: 0.

Ordinate: 5.

Altitude: 25.

Species name

Species_name: Iodine

100 CHAPTER 5. MODELS

Release time (seconds)

Release_time: 0.

Total mass released (mass)

Quantity: 1.

One species may have several puffs. The puff file can contain a list of puffs provided by the
user or a discretized line source or trajectory. In that case, it corresponds to the output file of
the discretization preprocessing program discretization.

5.3.3 Vertical Levels, Species and Meteorological data

They are exactly the same files as those described in Section 5.1, except that sigma parame-
terization with similarity theory is not yet available for puff model, so there is no need of the
associated meteorological data.

5.4 GaussianPuff aer

It is the Gaussian puff model for aerosol species. It can be run when there are aerosol species
only, or both aerosol and gaseous species. It takes the same input files as the Gaussian puff
model, except that they contain in addition some sections dedicated to aerosol species. It takes
in addition another input file that describes the diameters of particles (file diameter.dat already
described in the Section 3.9.2). The output files are binary files, one for each gaseous species
and one for each couple (species, diameter).

5.4.1 Configuration File: puff aer.cfg

It is exactly the same file as the configuration file described in Section 5.3. The only data that
may differ are the paths to the input files.

5.4.2 Source Description: puff aer.dat

It is the same file as the puff file for gaseous species described in Section 5.3, except that obviously
some (or all) emitted species will be particulate species. The corresponding sections are named
[aerosol source].

5.4.3 Vertical Levels, Species, Meteo and Diameters

Vertical level file and gaussian meteo file have been described in Section 5.1 and diameter files
is the same as in Section 3.9.2. Species file is the same file as described for the plume model for
aerosol species (Section 5.2.4).

5.5 Polair3DTransport

The model Polair3DTransport is configured with three configuration files (polair3d.cfg,
polair3d-data.cfg and polair3d-saver.cfg) and two data files (levels.dat and
species.dat). The main configuration file (polair3d.cfg) provides the paths to the four
other files.

5.5. POLAIR3DTRANSPORT 101

5.5.1 Main Configuration File: polair3d.cfg

102 CHAPTER 5. MODELS

[domain]

Date min Starting date in any legal format (see Section 2.2.7). The
date can therefore include seconds.

Delta t Time step in seconds.
Nt Number of iterations of the simulation (integer).
x min Abscissa of the center of the lower-left cell. Provide a

longitude (in degrees) or, in case Cartesian coordinates
are chosen, an abscissa in meters.

Delta x Step length along x, in degrees (longitude) or in meters
(for Cartesian coordinates).

Nx Number of cells along x (integer).
y min Ordinate of the center of the lower-left cell. Provide a

latitude (in degrees) or, in case Cartesian coordinates are
chosen, an ordinate in meters.

Delta y Step length along y, in degrees (latitude) or in meters
(for Cartesian coordinates).

Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels interfaces.
Cartesian If activated, coordinates are Cartesian and in meters.

Otherwise, coordinates are latitudes and longitudes in
degrees.

Species Path to the file that defines involved species and their
chemical properties.

[options]

With advection Are species advected?
With diffusion Are species diffused?
With air density If activated, vertical wind is diagnosed from div(ρV) = 0

where ρ is the air density and V the wind, and the dif-

fusion term is div
(

ρK∇ c
ρ

)

where c is the concentration

and K is the diffusion matrix. If this option is not ac-
tivated, it is assumed that ρ is constant and therefore
disappears from the previous equations.

With initial condition Are initial conditions provided for given species? If not,
initial concentrations are set to zero.

With boundary condition Are boundary conditions available for given species?
With deposition Is dry deposition taken into account?
With point emission Are point emissions provided?
With surface emission Are emissions at ground provided?
With additional surface emission Are additional emissions at ground provided?
With volume emission Are volume emissions provided?

5.5. POLAIR3DTRANSPORT 103

Scavenging model Which scavenging model is applied? If none, the scav-
enging is not taken into account. Otherwise, the fol-
lowing model is applied: constant for constant scav-
enging coefficient, belot for the Belot model (of the
form a p0

b, where p0 is the rain intensity in mm h−1) or
microphysical for the scavenging model based on mi-
crophysical properties of species.

Collect dry flux Are the dry deposition fluxes are collected in order to
postprocess them if dry deposition is taken into account?

Collect wet flux Are the wet deposition fluxes are collected in order to
postprocess them if wet deposition is taken into account?

[data]

Data description Path to the configuration file that describes input data.
Horizontal diffusion Horizontal diffusion coefficient in m2 s−1.
Isotropic diffusion If activated, horizontal diffusion is set equal to vertical

diffusion.

[output]

Configuration file Path to the configuration for the output saver.

5.5.2 Data Description: polair3d-data.cfg

This configuration file describes input data files (binary files). It is divided into sections: for
deposition, for meteorological fields, etc. A section roughly looks like this:

[meteo]

Date_min: 2004-08-09

Delta_t = 10800.

Fields: MeridionalWind ZonalWind Temperature Pressure Rain CloudHeight Attenuation\

SpecificHumidity

Filename: /u/cergrene/a/ahmed-dm/TestCase-1.0/data/meteo/&f.bin

VerticalDiffusion: /u/cergrene/a/ahmed-dm/TestCase-1.0/data/meteo/Kz_TM.bin

It is assumed that all binary files start at the same date, and this date is Date min (see dates
formats in Section 2.2.7). The time step is Delta t, in seconds.

Then a list of fields is provided after Fields. These are fields that the model needs, and
their names are determined by the model. Below, all fields required by the model (depending
on its options) are listed. A generic path (full file name) is then provided (entry Filename).
In this path, the shortcut ’&f’ refers to a field name. In the previous example, the full path to
the temperature is /u/cergrene/a/ahmed-dm/TestCase-1.0/data/Temperature.bin. In the
specific case of boundary conditions, the shortcut ‘&c’ is replaced by x, y and z.

If a few fields are not stored in a file with a generic path, their specific paths can be provided
after the entry Filename. This is the case for VerticalDiffusion in the previous example.

Note that:

1. entries Fields, Filename and additional paths must be at the end of the section, and in
this order;

104 CHAPTER 5. MODELS

2. at least one element (possibly not a required field) must be provided to Fields and at
least one element (possibly not a path) to Filename; for instance:

Fields: ---

Filename: --- # means no generic path.

but:

Fields: # Illegal: one element required.

Filename: # Illegal: one element required.

In most sections, Fields is used to specify all chemical species involved in the process, e.g.:

[deposition]

Date_min: 2001-01-02

Delta_t = 10800.

Fields: O3 NO NO2 H2O2 HCHO PAN HONO SO2 HNO3 OP1 PAA ORA1

Filename: /u/cergrene/A/mallet/2001/data/dep-2005-01-19/&f.bin

ALD /u/cergrene/A/mallet/2001/data/dep-2005-01-19/ALD-modified.bin

CO 0.002

Notice that CO is not associated with a path but with a numerical value. This is a feature: a
binary file may be replaced with a numerical value. In this case, the field (in the example, CO
deposition velocity) is set to a constant value (in every cell and at every time step). This works
with any field, including meteorological fields (section [meteo]). This feature is often used to
set constant boundary conditions.

In polair3d-data.cfg, several sections are required. Several sections have to be included
only if given options are activated. In the following table, all possible sections are listed, with
their entries.

Section Entries Comments
[initial condition] Fields, Filename If initial conditions are activated

(With initial condition).
[boundary condition] Date min,

Delta t,Fields,
Filename

If boundary conditions are activated
(With boundary condition).

[meteo] Date min, Delta t,
Fields, Filename

Required fields are: MeridionalWind

and ZonalWind if advection is activated,
VerticalDiffusion if diffusion is activated,
and Temperature and Pressure in case air
density is taken into account.

[deposition] Date min, Delta t,
Fields, Filename

If deposition is activated (With deposition).

[point emission] file Path to the file which defines the point emis-
sions (described below). If point emissions are
activated (With point emissions).

5.5. POLAIR3DTRANSPORT 105

[surface emission] Date min, Delta t,
Fields, Filename

If surface emissions are activated
(With surface emission).

[additional surfa...] Date min, Delta t,
Fields, Filename

If surface additional emissions are activated
(With additional surface emission). This
is mostly useful for biogenic emissions. Note
that a species with additional surface emissions
must have emissions in [surface emission].
You might need to add the given species (say
ISO) in section [surface emission] with zero
emissions (a line like ISO: 0).

[volume emission] Date min, Delta t, Nz,
Fields, Filename

If volume emissions are activated
(With volume emission). Nz is the num-
ber of levels in which pollutants are emitted.

[scavenging] Fields If the scavenging model is not set to “none”
(Scavenging model).

The file for point emissions have to contain a section [source] for each point emissions,
with the following features:

• its location: Abscissa and Ordinate are given in degrees (or in meters, in case Cartesian
coordinates are chosen) and Altitude is the vertical height in meters. Notice that the
emission is released in the cell containing the location of the point emission.

• the emitted species is filled after Species. Only one species is possible for each section
[source].

• the type Type may be continuous or puff for instantaneous release. The continuous

emission is described with entries Rate which corresponds to the quantity averaged on
the duration of the release, Date beg and Date end which are the beginning and ending
dates of the emissions (with format as described in Section 2.2.7). The puff emission is
described with entries Quantity and Date.

It may look like this:

[source]

Abscissa: 5.2

Ordinate: 48.5

Altitude: 10.

Species: NO

Type: continuous

Rate: 1.

Date_beg: 2001-04-22_00-05

Date_end: 2001-04-22_00-07

[source]

Abscissa: 10.3

106 CHAPTER 5. MODELS

Ordinate: 48.

Altitude: 80.

Species: SO2

Type: puff

Quantity: 1.

Date: 2001-04-22_00-05

5.5.3 Vertical Levels and Species

Vertical levels are defined in a single data file. They are defined by their interfaces. This
means that the file contains Nz+1 heights, where Nz is the number of levels specified in the main
configuration file. The concentrations are computed at layers mid-points.

Species are listed in the section [species] of a configuration file. In addition, some scav-
enging models needs extra data:

• The constant model requires a section [scavenging coefficient] which contains a
threshold of rain to apply scavenging (in mm h−1) and the name of the species with its
associated scavenging coefficient (in s−1); for instance:

[scavenging_coefficient]

Scavenging is applied above the following threshold over rain [mm / h].

Scavenging_rain_threshold: 1.

Scavenging coefficient of the species: [s^{-1}]

NO2 1.e-4 SO2 1.e-4

Notice that if the previous lines are replaced by

Scavenging coefficient of the species: [s^{-1}]

all 1.e-4

the same scavenging coefficient will be used for all scavenged species.

• The belot model has the following expression a p0
b where coefficients a and b have to be

provided for every species in a section [belot]; for instance:

[belot]

Coefficients a and b for the Belot parameterization ($a * {p_0}^b$)

where po is the rain intensity [mm / h].

species a b

all 1.e-05 0.8

• In case the microphysical model is used, Henry constants (in mol L−1 atm−1) and gas-
phase diffusivities (in cm2 s−1) should be provided. Henry constants are listed in section
[henry]; for instance:

5.6. POLAIR3DCHEMISTRY 107

[henry]

Henry constant: [mol / L / atm]

O3 1.e-2 NO 2.e-3 NO2 1.e-2 H2O2 1.e5

HCHO 6.e3 ALD 15. PAN 3.6 HONO 1.e5

SO2 1.e5 HNO3 1.e14 OP1 2.4e2 PAA 5.4e2

ORA1 4.e6 CO 1.e3 N2O5 1.e14

Gas-phase diffusivities are provided in the same way in section [diffusivity].

5.6 Polair3DChemistry

Model Polair3DChemistry is configured with three configuration files (polair3d.cfg,
polair3d-data.cfg and polair3d-saver.cfg) and two data files (levels.dat and
species.dat). The main configuration file (polair3d.cfg) provides the paths to the four
other files.

A configuration for Polair3DChemistry is an extension of the configuration for Po-
lair3DTransport. In this section, the description is limited to Polair3DChemistry additional
configuration. See Section 5.5 for the rest of the configuration.

5.6.1 Main Configuration File: polair3d.cfg

In addition to fields introduced in Section 5.5.1, the following fields are read by Polair3DChemistry:

[options]

With chemistry Should chemistry occur?
With photolysis Should photolysis occur?
With forced concentrations If activated, the concentrations of a few species are set

to values read in files.
Source splitting If activated, source splitting is used within chemistry in-

tegration. Advection and diffusion fluxes are included
in the chemistry integration as sources. This slightly in-
creases the memory requirements but is recommended
for numerical stability.

5.6.2 Data Description: polair3d-data.cfg

In addition to the configuration described in Section 5.5.2, a section [photolysis rates] may
be required (if the chemical mechanism includes photolysis reactions). Photolysis rates depend
on days, time angle, latitude and altitude. During the time integration, they are linearly inter-
polated in all cells.

Section Entries Comments
[photolysis rates] Date min Starting date of photolysis rates.

Delta t Time step in days.
Ndays Number of steps.
Time angle min Starting time angle in hours.
Delta time angle Time angle step in hours.
Ntime angle Number of time angles.

108 CHAPTER 5. MODELS

Latitude min First latitude in degrees.
Delta latitude Step along latitude in degrees.
Nlatitude Number of latitude steps.
Altitudes List of altitudes in meters at which photolysis

rates are provided.
Fields, Filename Photolysis reaction names and the paths to the

files in which photolysis rates are stored.

5.6.3 Vertical Levels and Species

Section 5.5.3 is relevant for Polair3DChemistry, and in particular the file giving the lev-
els is exactly the same. As for species, a section [molecular weight] lists the molecu-
lar weights (in g mol−1) of all species. If photolysis reactions are involved, the section
[photolysis reaction index] is required. This section provides all reaction names and their
indices in the list of reactions. Below is an example.

[photolysis_reaction_index]

NO2 0 O3O1D 1 O3O3P 2 HONO 3

HNO3 4 HNO4 5 NO3NO 6 NO3NO2 7

H2O2 8 HCHOmol 9 HCHOrad 10 ALD 11

MHP 12 HOP 13 PAA 14 KETONE 15

GLYform 16 GLYmol 17 MGLY 18 UDC 19

ORGNIT 20 MACR 21 HKET 22

The previous section is quoted from Polyphemus/driver/species.dat and is consistent
with RACM (as implemented in ChemistryRACM – Section 6.2.1).

5.7 Polair3DAerosol

Polair3DAerosol is configured with three configuration files (polair3d.cfg, polair3d-data.cfg
and polair3d-saver.cfg) and two data files (levels.dat and species.dat). The main con-
figuration file (polair3d.cfg) provides the paths to the four other files.

A configuration for Polair3DAerosol is an extension of the configuration for Polair3DChemistry.
In this section, the description is limited to Polair3DAerosol additional parameters. See Sec-
tion 5.6 for the rest of the configuration.

5.7.1 Main Configuration File: polair3d.cfg

In addition to fields introduced in Section 5.6.1, the following fields are read by Polair3DAerosol.

[domain]

Bin bounds The bounds of the diameter classes for aerosol species.
Note that the classes are the same for each aerosol
species.

[options]

With initial condition aerosol Are initial conditions provided for given aerosol species?
If not, initial concentrations are set to zero.

5.7. POLAIR3DAEROSOL 109

With boundary condition aerosol Are boundary conditions available for given aerosol
species?

With pH Does the aerosol module returns cloud droplet pH?
Lwc cloud threshold Liquid water content threshold above which a cloud is

diagnosed in the cell.
Fixed aerosol density Fixed aerosol density in kg m−3 used in the model.
With deposition aerosol Is dry deposition taken into account for aerosol species?
Compute deposition aerosol If set to yes, deposition velocities for aerosol species are

computed with land data, otherwise they are read in files.
Only needed if dry deposition is taken into account.

With point emission aerosol Are point emissions provided for aerosol species?
With surface emission aerosol Are emissions at ground provided for aerosol species?
With volume emission aerosol Are volume emissions provided for aerosol species?
With scavenging aerosol Is there scavenging for aerosol species?
With in cloud scavenging Is there in cloud scavenging for aerosol species?
Collect dry flux aerosol Are the dry deposition fluxes are collected in order to

postprocess them if dry deposition is taken into account?
Collect wet flux aerosol Are the wet deposition fluxes are collected in order to

postprocess them if wet deposition is taken into account?

The bin bounds are presented as follow:

Bin_bounds:

diameter of the particle classes in micrometers.

0.0 0.1 1 1.5 2 5

Note that these values are the bounds of the various diameter classes and that therefore there
is one more value than there are classes.

5.7.2 Data Description: polair3d-data.cfg

In addition to the sections described in Section 5.6.2, some parameters may be necessary:

Section Entries Comments
[initial condition aerosol] Fields, Filename If initial conditions are activated

(With initial condition aerosol).
[boundary condition aerosol] Date min, Delta t,

Fields, Filename
If boundary conditions are activated
(With boundary condition aerosol).

[deposition velocity aerosol] Fields, Filename If deposition is activated
(With deposition aerosol) and de-
position velocities are not computed
(Compute deposition aerosol set to no).

[point emission aerosol] file Path to the file which defines the point
emissions. If point emissions are activated
(With point emissions aerosol).

[surface emission aerosol] Date min, Delta t,
Fields, Filename

If surface emissions are activated
(With surface emission aerosol).

[volume emission aerosol] Date min, Delta t,
Nz Fields,
Filename

If volume emissions are activated
(With volume emission aerosol). Nz

is the number of levels in which pollutants
are emitted.

110 CHAPTER 5. MODELS

5.7.3 Vertical Levels and Species

Section 5.6.3 is relevant for Polair3DAerosol. In addition, there is at least a section added in
the file species.dat:

[aerosol_species]

PMD PBC PNA PSO4 PNH4 PNO3 PHCL PARO1

PARO2 PALK1 POLE1 PAPI1 PAPI2 PLIM1 PLIM2 PPOA PH2O

5.8 Polair3DChemistryAssimConc

Polair3DChemistryAssimConc is dedicated for a state space formulation of the underlying dy-
namical model. The stochastic modeling is implemented for diverse applications such as data
assimilation.

Polair3DChemistryAssimConc is configured with three configuration files (polair3d.cfg,
polair3d-data.cfg and polair3d-saver.cfg) and two data files (levels.dat and species.dat).
The four files other than the main configuration file (polair3d.cfg) are the same as those for
Polair3DChemistry. The main configuration file is an extension of that of Polair3DChemistry.

The additional parameters are:

[state]

Species List of species included in model state vector. All species must be
on the same line.

Levels List of vertical levels of model domain included in model state
vector. All levels must be on the same line.

[data assimilation]

Error covariance model Stochastic model for model and background error covariance.
With option set to Balgovind, the corresponding error covariance
matrix is calculated using Balgovind correlation function; with
option set to diagonal constant, the corresponding error covari-
ance matrix is a diagonal matrix of which the diagonal elements
are error variances.

Background error variance Error variance for background concentrations. The unit for the
option value is µg m−3.

Balgovind scale background Balgovind scale for background error covariance. The model grid
interval is chosen to be the unit for option values.

Model error variance Error variance for model simulations (in µg m−3).
Balgovind scale model Balgovind scale for model error covariance. The model grid inter-

val is chosen to be the unit for option values.

The data file is the same as in Section 5.6.2, the species and levels files are the same as those
presented in Section 5.6.3.

5.9. CASTORTRANSPORT 111

5.9 CastorTransport

5.9.1 Main Configuration File: castor.cfg

Model CastorTransport is based on IPSL model Chimere. Its option are provided in a config-
uration file:

[domain]

Date min Starting date in any legal format (see Section 2.2.7). The
date can therefore include seconds.

Delta t Time step in seconds.
Nt Number of iterations of the simulation (integer).
x min Abscissa of the center of the lower-left cell. Provide a

longitude (in degrees) or, in case Cartesian coordinates
are chosen, an abscissa in meters.

Delta x Step length along x, in degrees (longitude) or in meters
(for Cartesian coordinates).

Nx Number of cells along x (integer).
y min Ordinate of the center of the lower-left cell. Provide a

latitude (in degrees) or, in case Cartesian coordinates are
chosen, an ordinate in meters.

Delta y Step length along y, in degrees (latitude) or in meters
(for Cartesian coordinates).

Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels interfaces.

This field is read but is not used.
Species Path to the file that defines involved species and their

chemical properties.

[options]

With transport Is transport taken into account?
With initial condition Are initial conditions used?
Interpolated initial condition If set to yes, initial conditions are interpolated from

boundary conditions, otherwise they are read in binary
files.

With boundary condition Are boundary conditions provided?
With deposition Is deposition taken into account?
With volume emission Are volume emissions taken into account?

[data]

Data description Path to the configuration file that describes input data.

5.9.2 Data Description: castor-data.cfg

The data description is very similar to that of Polair3DTransport (see Section 5.5.1), except
that the data can be different.

112 CHAPTER 5. MODELS

Section Entries Comments
[initial condition] Fields, Filename If initial conditions are activated

(With initial condition) and not inter-
polated (Interpolated initial condition

set to no).
[boundary condition] Fields, Filename If boundary conditions are activated

(With boundary condition).
[meteo] Date min, Delta t,

Fields, Filename
Required fields are: Temperature, Pressure,
Altitude, AirDensity, MeridionalWind,
ZonalWind and VerticalDiffusion.

[deposition] Date min, Delta t,
Fields, Filename

If deposition is activated (With deposition).

[volume emission] Date min, Delta t, Nz,
Fields, Filename

If volume emissions are activated
(With volume emission). Nz is the num-
ber of levels in which pollutants are emitted.

5.9.3 Vertical Levels and Species

A file containing vertical levels similar to the one for “Polair3D” models is read but is not useful.
Give any such file.

Species file has two sections:

• [species] which contains all species managed by the simulation.

• [species ppm] which contains all species for which an upwind scheme is not used.

5.10 CastorChemistry

Model CastorChemistry is derived from CastorTransport and all data presented in Section 5.9
are necessary for this model too. In addition some other parameters are needed.

5.10.1 Main Configuration File: castor.cfg

[options]

With chemistry Is chemistry taken into account?

[chemistry]

Reaction file Data file containing the reactions.
Stoichiometry file Data file containing the stoichiometry of the reactions.
Photolysis file

Rates file

5.10.2 Data Description and Species

Data Description The only difference with what is described in Section 5.9.2 is that more
meteorological fields are necessary (see Section 2.5.4).

Species The species file is exactly the same as the one presented in Section 5.9.3.

5.11. PLUMEINGRIDDRIVER 113

5.10.3 Chemistry Files

When model CastorChemistry is used, four files are necessary to describe the chemistry:

• Reaction file which gives the reactions between the species managed in the format

2 CO OH 2 HO2 CO2

The first column gives n the number of species reacting, the n following columns give
the name of the species reacting, the following columns are the number and names of the
species resulting from the reaction.

• Stoichiometry file

• Photolysis file

• Rates file

5.11 PlumeInGridDriver

The plume in grid model has been described in Section 4.6. As it is mainly used as a driver, it
has been described along with other drivers. However, it is basically a model. This allows to
use advanced methods using PlumeInGridDriver as a model.

114 CHAPTER 5. MODELS

Chapter 6

Modules

6.1 Transport modules

6.1.1 AdvectionDST3

Module AdvectionDST3 is the transport module associated to advection for Polair3D. It is
based on a third-order “direct space-time” scheme with a Koren-Sweby flux limiter. The data
needed are the wind components and boundary conditions if they are available.

Please note that Courant-Friedrichs-Lewy (CFL) condition is not verified and that the user
should choose the mesh dimensions and the time-step of simulations very carefully. In order to
enforce the CFL, you may use module SplitAdvectionDST3 instead.

6.1.2 SplitAdvectionDST3

Module SplitAdvectionDST3 is the same as AdvectionDST3 except that

• it uses directional splitting;

• it performs automatic subcycling in order to satisfy the CFL.

6.1.3 GlobalAdvectionDST3

Module GlobalAdvectionDST3 is the same as AdvectionDST3 for global scale (boundary con-
ditions are not used).

6.1.4 DiffusionROS2

Module DiffusionROS2 is the transport module associated to diffusion for Polair3D. It is based
on a second-order Rosenbrock method. Fortran routines are used to perform all numerical
computations.

6.1.5 GlobalDiffusionROS2

Module GlobalDiffusionROS2 is the same as DiffusionROS2 for global scale.

6.1.6 TransportPPM

Module TransportPPM is the numerical solver for transport used in Castor model. It uses
piecewise parabolic method (PPM) for advection but can also use an upwind scheme for some
species.

115

116 CHAPTER 6. MODULES

In the species file associated with castor there are two sections: [species] and [ppm species].
For all species in [species] but not in [ppm species] an upwind scheme will be used.

6.2 Chemistry Modules

6.2.1 ChemistryRACM

Module ChemistryRACM is the most common photochemical module used with Polair3D. It
implements RACM (Stockwell et al. [1997]) and uses a second-order Rosenbrock method for
time integration. Computations are performed by Fortran routines (automatically generated by
the chemical preprocessor SPACK) and a C++ program is used as a frame to launch all these
calculations.

It only deals with gaseous species and manages 72 species, 237 reactions (including 23 pho-
tolysis reactions).

6.2.2 ChemistryRADM

Module ChemistryRADM is quite similar to ChemistryRACM. RACM has actually been derived
from RADM.

RADM manages 61 species, 157 reactions involving those species and 21 photolysis reactions.

6.2.3 ChemistryCastor

Module ChemistryCastor is the default chemical module for Castor. It involves 44 species
and 118 reactions. It is based on several data files which must be provided: Reaction file,
Stoichiometry file, Photolysis file and Rate file. See Section 5.10.3 for more details
about these files.

6.2.4 Decay

This chemistry module is used for species (gaseous or particulate) which have a radioactive or
biological decay, that is to say a natural decrease in their concentrations over time. This decay
requires two more options in the configuration file (polair3d.cfg).

[options]

With time dependence If set to yes, the value of the half-life time for each species depend
on the time of the day (see below).

With filiation matrix If set to yes, decay and filiation are represented by a matrix (see
below).

Note that With time dependence and With filiation matrix cannot be both set to yes at
the same time.

Use of One Value of Decay The first possibility is that each species has a half-life time which
is given in species.dat. In that case With time dependence and With filiation matrix are
both set to no. The variation of concentration due to decay only is described in equation (6.1)
where T1/2 is the species half-life time in days and t0 is a reference time. If a species has no
decay, its half-life time is set to 0, and this is interpreted by Decay as the fact that concentration

6.2. CHEMISTRY MODULES 117

does not vary due to decay.

C(t) = C(t0) exp

(

−
(t − t0) ln 2

T1/2

)

(6.1)

The parameters needed are provided in species.dat as follow.

[species]

Sp1 Sp2 Sp3 Sp4

[aerosol_species]

Aer1 Aer2

[half_life]

Half-lives in days, put 0 for species without decay.

Sp1 300

Sp2 216

Sp3 0

Sp4 41

[half_life_aerosol]

Half-lives in days, put 0 for species without decay.

Aer1 250

Aer2 120

Use of Two Values of Decay Another option is that each species has two values of T1/2,
one for the day and one for the night. This is in particular the case for species which have a
biological effect. As before, for a species without decay, both half-life times are set to 0. The
equation involved is very similar to equation (6.1), except that the value of T1/2 can vary. In
that case With time dependence is set to yes and With filiation matrix to no.

The parameters needed are provided in species.dat.

[species]

Sp1 Sp2 Sp3 Sp4

[aerosol_species]

Aer1 Aer2

[half_life_time]

Half-lives in days, put 0 for species without decay.

First value for day, second for night.

118 CHAPTER 6. MODULES

Sp1 300 500

Sp2 216 300

Sp3 0 0

Sp4 41 72

[half_life_time_aerosol]

Half-lives in days, put 0 for species without decay.

First value for day, second for night.

Aer1: 250 350

Aer2: 120 180

Decay tests whether it is day or night and chooses the value of half-life time to use.

Use of a Filiation Matrix The last solution is that a single matrix (called filiation matrix)
is specified for all gaseous species (and one for all aerosol species), which takes into account
both decay and the fact that a species can react to form other species. As a result, the evo-
lution of the concentration due to chemistry only is described in equation (6.2). In that case
With time dependence is set to no and With filiation matrix to yes.

Cn+1(x, y, z) = ACn(x, y, z) (6.2)

where A is the s × s filiation matrix and Cn(x, y, z) =

cn
0 (x, y, z)

. . .

cn
i (x, y, z)

. . .

cn
s−1(x, y, z)

with cn
i (x, y, z) the

concentration of species i at time-step n in point of coordinate (x, y, z) and s the number of
species involved.

The parameters are specified as follows, in species.dat

[species]

Sp1 Sp2 Sp3 Sp4

[aerosol_species]

Aer1 Aer2

[filiation_matrix]

File: example/decay/matrix.dat

[filiation_matrix_aerosol]

File: example/decay/matrix_aer.dat

The s × s filiation matrix is specified in file matrix.dat as below :

0.7 0.05 0 0.1

0 0.8 0.1 0.05

0.1 0.1 0.6 0.1

0.15 0 0.1 0.7

6.3. AEROSOL MODULES 119

The matrix for aerosol species is very similar to the one for gaseous species.

6.3 Aerosol Modules

6.3.1 AerosolRACM SIREAM

To use this module, sources for ISORROPIA (Nenes et al. [1998]) are necessary. You can
obtain them from its home page http://nenes.eas.gatech.edu/ISORROPIA/. After you ob-
tained and extracted the files, you have to rename ISOCOM.FOR as isocom.f, ISOFWD.FOR as
isofwd.f, ISOREV.FOR as isorev.f and ISRPIA.INC as isrpia.inc and to put them in direc-
tory include/isorropia.

And finally compile the file polair3d-siream.cpp using the makefile makefile.siream pro-
vided. A specific makefile has been provided because AerosolRACM SIREAM redefines some
Fortran routines defined by ChemistryRACM, and because the flag POLYPHEMUS WITH AEROSOL MODULE

should be activated.

AerosolRACM SIREAM This chemistry module is used for gas and aerosol species for
general purposes as air quality modeling and risk assessment. The gas chemistry is solved with
the RACM (Stockwell et al. [1997]) mechanism and the aerosol dynamics by the SIREAM model
(Debry et al. [2007]). When a cloud is diagnosed in one cell of the domain, then instantaneous
aerosol activation is assumed and the SIREAM model is replaced by the VSRM cloud chemistry
model (Fahey and Pandis [2003]).

The number of aerosol bins is directly inferred from the number of bounds provided by the
Bin bounds option in main configuration file (polair3d.cfg). Further options are required in
this configuration file.

[options]

With pH Does the aerosol module returns cloud droplet pH?
Scavenging model Which below cloud scavenging model is used?
Lwc cloud threshold Liquid water content threshold for clouds.
With coagulation Is coagulation taken into account?
With condensation Is condensation taken into account?
With nucleation Is nucleation taken into account?
Fixed aerosol density Fixed aerosol density in kg m−3 used in the module
With cloud chemistry Is cloud chemistry taken into account?
With in cloud scavenging Is in-cloud scavenging taken into account?
With heterogeneous reactions Are heterogeneous reactions taken into account?
With kelvin effect Is Kelvin effect taken into account?
Dynamic condensation solver Which solver is used for dynamic condensation?
Fixed cutting diameter Fixed cutting diameter in µm.
Sulfate computation Which method is used to solve sulfate condensation?

Choices are equilibrium or dynamic.
Redistribution method Which redistribution method is used?
Nucleation model Which nucleation model is used?
With fixed density Is aerosol density fixed in the module?
Wet diameter estimation Which method is used to compute aerosol wet diameters?

The liquid water content threshold is the amount of liquid water in the air above which a
cloud is diagnosed in the cell.

120 CHAPTER 6. MODULES

This chemistry module returns the cloud droplet pH, this means that With pH can be set
to yes, and that microphysical-pH scavenging model can be used. Otherwise choosing the
microphysical-pH scavenging model may result in crash or errors.

Note that options With pH, Lwc cloud threshold and Fixed aerosol density are used by
both model and module. That is to say the fixed aerosol density is the same in the model as in
the module.

The fixed cutting diameter has to be given as an aerosol diameter in µm. Aerosol bins below
that diameter are assumed at equilibrium, and those above that diameter are not considered
at equilibrium. The criteria is the comparison between the fixed cutting diameter and the bin
bounds. The aerosol bin whose bounds are surrounding the fixed cutting diameter is included
in the equilibrium bins.

Dynamic condensation is intended for aerosol bins which are not at equilibrium, and therefore
time resolved mass transfer has to be computed for them. The solver for dynamic condensation
may be set to either etr or ros2 or ebi. The etr solver is an Explicit Trapezoidal Rule second
order algorithm, the ros2 solver is the Rosenbrock implicit second order scheme (Rosenbrock
[1963]), and ebi is an Euler Backward Iterative scheme. Each of these solvers usually needs
some numerical parameters, these are gathered in the Fortran include file paraero.inc.

Option With kelvin effect only affects dynamic bins.
Among aerosol species, sulfate condensation may have a different treatment. If

Sulfate computation is set to equilibrium then its treatment is equivalent to other species
for both equilibrium and dynamic bins. But if it is set to dynamic then sulfate condensation is
time resolved for all bins, using an analytic solution of mass transfer equations. This method is
implemented in the sulfdyn.f Fortran routine.

As dynamic condensation is solved with a Lagrangian scheme, a redistribution process over
the fixed aerosol size grid has to be performed at the end of condensation. Two methods
are possible: number-conserving or interpolation. The former conserves the relationship
between mass and number concentration in each bin, the latter relaxes this relationship.

Available nucleation models are either binary nucleation H2SO4–H2O (Vehkamäki et al.
[2002]) or ternary nucleation H2SO4–H2O–NH3 (Arstila et al. [1999]).

In the aerosol module, the aerosol density can be either fixed or recomputed at run time
according to option With fixed density. If set to yes the aerosol density will always be equal to
the fixed aerosol density mentioned above, if set to no the module will recompute one density for
each aerosol bins according to their chemical compositions given by the thermodynamic model.

Two parameterizations are available to compute wet diameters depending on the option
Wet diameter estimation. If set to Isorropia the aerosol liquid water content computed by
the thermodynamic model, for instance ISORROPIA, is used. If set to Gerber, a simpler but
faster method, the Gerber formula, is used.

Note that when Gerber option is used, the aerosol density is fixed for all aerosol processes
except condensation even if option With fixed density is set to no. In other words if run
time computation of density is chosen, it will only affect condensation. Indeed when using the
Gerber formula for fastness purpose there is little interest in recomputing density. Then the
fixed density is that specified with Fixed aerosol density option.

6.3.2 Decay

Module Decay also supports aerosols. See Section 6.2.4.

Chapter 7

Postprocessing

7.1 Graphical Output

7.1.1 Installation and Python Modules

In Polyphemus, we advocate the use of Matplotlib (with NumPy), Basemap and AtmoPy. Please
refer to Sections 1.2 and 1.3 for system-wide installation notes. Below are installation notes for
the user.

IPython and Matplotlib

Matplotlib is a Python 2D plotting library which produces high quality figures. On its website
http://matplotlib.sourceforge.net/, you may find help for all Matplotlib commands. You
may also find many useful examples (Sections “Screenshots” and “Examples (zip)”), a complete
tutorial, a useful FAQ, an interesting “cookbook/wiki” and other resources. We highly rec-
ommend the use of Matplotlib (actually imported through module pylab – see below) together
with IPython (enhanced Python shell, http://ipython.scipy.org/) to benefit from a powerful
interactive mode.

Once IPython, NumPy and Matplotlib installed, launch IPython with command ipython.
IPython needs to be launched once to complete its (user) installation. You should get the prompt
“In [1]:”. If you are aware of Python, you can execute Python commands from this prompt.

Now, try to import Matplotlib:

In [1]: from pylab import *

If no error occurs, your installation is mostly complete. Quit IPython (ctrl+d and RET). Now
edit Matplotlib configuration file. Under Linux or Unix, it is located in ∼/.matplotlib/matplotlibrc.
Under Windows, it is in C:\Documents and Settings\yourname\.matplotlib. You should
find the entries numerix and interactive. Edit them if necessary (warning: it is case sensi-
tive), so that you have:

numerix : numpy # numpy, Numeric or numarray

interactive : True # see http://matplotlib.sourceforge.net/interactive.html

You may change the backend depending on what is installed on your computer. Polyphemus
development team mostly uses the backend TkAgg:

backend : TkAgg

121

122 CHAPTER 7. POSTPROCESSING

But other interactive backends are fine. If you have any question about the backends, consult
Matplotlib website.

Now we test the installation. Launch IPython and:

In [1]: from pylab import *

In [2]: plot([5, 8])

On screen, you should get a new window (a figure) with a line (first diagonal) from (0, 5) to
(1, 8). And the prompt should still be available:

In [3]:

Make another plot:

In [3]: plot([6, 7])

You should get a new line (in green, probably). The prompt should still be there:

In [4]:

Basemap

Basemap extends Matplotlib so that one may display fields with a map in the background (World
map, Europe map . . .).

You can test your Basemap installation with:

>>> from pylab import *

>>> from matplotlib.toolkits.basemap import Basemap

>>> m = Basemap(projection = ’cyl’)

>>> m.drawcountries()

>>> m.drawcoastlines()

>>> draw()

This should show a World map. Other examples are available on Matplotlib website.

AtmoPy

Recall that extract configuration.cpp must be compiled (in atmopy/talos) – see Section 1.3.
Then make sure that Python will be able to find the AtmoPy directory in order to load it. In
the distribution, AtmoPy is in directory Polyphemus/include/atmopy. When you load AtmoPy
under Python (from atmopy import * in a program or in IPython), Python searches for the
directory atmopy in the local directory (that is, ./atmopy). If atmopy is not in the current
directory, Python searches for atmopy in all paths of $PYTHONPATH (under Linux and Unix).

Hence you have two options:

1. copy directory atmopy (from Polyphemus/include/) into the current directory, or create
a symbolic link to it (ln -s /path/to/Polyphemus/include/atmopy); or

2. update $PYTHONPATH so that it includes the path to atmopy, e.g., in Bash: export

PYTHONPATH=$PYTHONPATH:/path/to/Polyphemus/include/atmopy, which you may put
in ∼/.bashrc.

If Matplotlib and Basemap are properly installed, then AtmoPy should work. A test function
is provided with AtmoPy to check:

7.1. GRAPHICAL OUTPUT 123

>>> from atmopy import *

>>> atmopy_test()

If you get Figure 7.1, AtmoPy is properly installed.

-10 -5 0 5 10 15 20
35

40

45

50

55

0.24

0.48

0.72

0.96

1.20

1.44

1.68

1.92

Figure 7.1: Output of function atmopy test. If you get this figure, AtmoPy is properly installed.

7.1.2 A Very Short Introduction to Python and Matplotlib

In this section, several examples are meant to introduce to Python and Matplotlib. The following
commands are sometimes given with comments (after character #). You can execute them under
IPython if you wish.

Base and Lists

>>> x = 5

>>> y = 2 * x + 7

>>> print 2 * y # Under IPython, print is useless; just type 2 * y

34

>>> y = 7; print "y =", y # Combined commands with semicolon

y = 7

>>> a = [-1, 5, 3] # ’a’ is a list

>>> print a[0] # 0 is the first index

-1

>>> a = range(10); print a

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for i in range(3):

... print "i =", i

i = 0

i = 1

i = 2

124 CHAPTER 7. POSTPROCESSING

In Python, blocks are delimited by the indentation. For instance (without the prompt >>>):

y = 0; x = 0

for i in [2, 5, 15]: # First loop

for j in [1, 3, 9]: # Nested loop

x += i * j # Inside the inner loop

y += x # Outside the inner loop, but still inside the outer loop

print y # Outside the loops; the loops are "closed"

Arrays (NumPy)

>>> from numpy import * # Loads NumPy

>>> a = arange(6, dtype = ’d’) # "d" means double (floating point precision)

>>> print a

[0. 1. 2. 3. 4. 5.]

>>> a = zeros((2, 3), dtype = ’d’) # 2D array

>>> print a.shape

(2, 3)

>>> a[1, 2] = 5.

>>> a[0, :] = 10. # Fills the first line

>>> a[1, 0:2] = -1. # From column 0 to column 1 (2 is excluded)

>>> print a

[[10. 10. 10.]

[-1. -1. 5.]]

>>> print a.sum(), a.max(), a.min(), a.mean(), a[:, 0].sum()

33.0 10.0 -1.0 5.5 9.0

>>> print 2. * a[:, 1:] - 2. # Calculation without the first column

[[18. 18.]

[-4. 8.]]

Matplotlib

>>> from numpy import *

>>> from pylab import * # Loads Matplotlib

>>> x = arange(10, dtype = ’d’)

>>> y = x * x

>>> plot(y)

>>> plot(x, y)

>>> figure() # New figure

>>> plot(x, y, "k-") # "k" for "black", "-" for a solid line

>>> figure(1) # Comes back to the first figure

>>> plot(x, y, "k--") # "--" for a discontinuous line

>>> close() # Closes current figure

>>> plot(x, y, "k:") # ":" for a dotted line

>>> clf() # Clears the figure

>>> plot(x, y, "k-", label = "Simple") # "label =" is for the legend

>>> plot(x, 2. * y, "k--", label = "Double")

>>> legend()

>>> xlabel("Abscissa")

>>> ylabel("Ordinate")

7.1. GRAPHICAL OUTPUT 125

>>> savefig("plot_example.eps") # Saves the figure in EPS (could be PNG or JPG)

7.1.3 Visualization with AtmoPy

AtmoPy provides functions to use Basemap easily and to process data (mainly statistics). It is
first used to load binary files (generated in preprocessing, or output of a model or a driver).

Configuration File: disp.cfg

In order to load and process data in a binary file, it is convenient to use AtmoPy with a small
configuration file, often called disp.cfg. This file describes the data to be read:

[input] (optional)
Nt Number of time steps to be read in the binary file. It can be less than the total

number of time steps in the file. It cannot be more. If you want to load all
available steps, put 0: Nt will be deduced from the file size and other dimensions
(Nx, Ny and Nz). If you do so, please check the number of steps that are actually
read by AtmoPy; if the number of steps is surprising, check Nx, Ny and Nz in
your configuration file.

x min Abscissa (longitude) of the center of the lower-left cell. It is primarily used to
load a background map in figures.

Delta x Space step along x (longitude). It is primarily used to load a background map
in figures.

Nx Number of cells along x.
y min Ordinate (latitude) of the center of the lower-left cell. It is primarily used to

load a background map in figures.
Delta y Space step along y (latitude). It is primarily used to load a background map in

figures.
Ny Number of cells along y.
Nz Number of vertical layers.
file Path to the binary file containing the data.

Here is an example of such a configuration file where the data to be read is in results/O3.bin

(e.g., ozone at ground level):

[input]

Nt = 121

x_min = -10.0 Delta_x = 0.5 Nx = 67

y_min = 35 Delta_y = 0.5 Ny = 46

Nz = 1

file: results/O3.bin

Note that general.cfg, polair3d.cfg, . . . contain similar entries. You may simply copy
and paste these entries. The number of time steps and vertical layers might be different. For
instance, polair3d.cfg contains the number of model layers, not necessary the number of levels
in the target file.

Python Commands: Loading and Processing Data

In IPython, AtmoPy first reads the configuration file (disp.cfg):

126 CHAPTER 7. POSTPROCESSING

>>> from atmopy import * # Loads AtmoPy

>>> from atmopy.display import * # Loads AtmoPy submodule display

>>> d = getd("disp.cfg") # d is a 4D array

You may overwrite the entries in disp.cfg:

>>> d = getd("disp.cfg", filename = "results/NO.bin") # Loads another file

without editing disp.cfg

>>> d = getd("disp.cfg", Nt = 0) # Overwrites Nt

>>> d = getd("disp.cfg", filename = "results/NO.bin", Nt = 0)

>>> d = getd("disp.cfg", filename = "results/NO.bin", Nt = 0, Nz = 2)

The array d has four dimensions: Nt×Nz×Ny×Nx. Hence d[10, 0, 2, 9] refers to data
at the time step #10 (11th time step since indices start at 0), in the first level, in horizontal
cell with indices 2 along y and 9 along x. Another example is d[15, 0] which is a 2D array
(dimensions: y, x) of data at 16th time step and in the first layer.

A few examples show the way data can be manipulated:

>>> d = getd("disp.cfg", filename = "results/O3.bin")

>>> d_ref = getd("disp.cfg", filename = "results/O3-reference.bin")

>>> print d.shape # Same as d_ref.shape: Nt = 48, Nz = 1, Ny = 46, Nx = 67

(48, 1, 46, 67)

>>> print d.mean()

78.5597571528

>>> print abs(d - d_ref).mean()

16.99608674

>>> from numpy import * # Needed for sqrt (see below)

>>> print sqrt(((d - d_ref) * (d - d_ref)).mean()) # Elementwise multiplication

22.6488311576

>>> print (d[10:25] - d_ref[10:25]).min() # Selected time steps

-78.5329427719

>>> print (d[:, 0, 23, 34] - d_ref[:, 0, 23, 34]).max() # Selected cell in the

middle of the domain

-1.01527786255

Python Commands: Visualization

Using AtmoPy:

>>> from atmopy import * # Loads AtmoPy

>>> from atmopy.display import * # Loads AtmoPy submodule display

>>> from pylab import * # Matplotlib is needed for figure() and plot()

>>> d = getd("disp.cfg") # d is a 4D array

>>> m = getm("disp.cfg") # Loads the background map; an empty figure should pop up

>>> disp(m, d[2, 0]) # Displays data at the third time step and first level

>>> disp(m, d[2, 1]) # Next vertical level

>>> figure() # Another figure

>>> disp(m, d[0, 0], vmin = 0, vmax = 200) # Data range (for the color bar)

>>> dispcf(m, d[10, 0]) # With contours

>>> dispcf(m, d[10, 0], V = 10) # With ten contours

>>> dispcf(m, d[10, 0], V = [0, 50, 100, 150, 200]) # Sets the contours

>>> disp(m, d[10, 0], interpolation = "nearest") # No interpolation

7.1. GRAPHICAL OUTPUT 127

Figure 7.1 shows the result of dispcf with 25 contours.
Without disp or dispcf (in case there is no background map, e.g. at small scale):

>>> contourf(d[10, 0])

>>> colorbar()

Figure 7.2 illustrates contourf.

0 50 100 150
0

50

100

150

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8
x1e-21

Figure 7.2: Concentration map obtained with the command contourf.

In addition, functions stat.spatial distribution and stat.time evolution may be very
useful:

>>> d = getd("disp.cfg")

>>> print d.shape

(48, 1, 46, 67)

>>> d_max = stat.spatial_distribution(d, "max") # Takes time maxima

>>> print d_max.shape

(1, 46, 67)

In every cell, function stat.spatial distribution takes the maximum concentration over the
time. If you want to display the time averages:

>>> dispcf(m, stat.spatial_distribution(d, "mean")[0])

Function stat.time evolution computes the time evolution of a spatial indicator. For
instance:

>>> d_min = stat.time_evolution(d, "min") # Spatial minimum as function of time

>>> print d_min.shape

(48,)

>>> plot(d_min, label = "Spatial minimum")

>>> plot(stat.time_evolution(d, "max"), label = "Spatial maximum")

128 CHAPTER 7. POSTPROCESSING

To Get Further Help

In IPython command line, you can get help this way:

>>> help(plot)

>>> help(stat.time_evolution)

In addition, all AtmoPy functions are described in a reference documentation (generated with
epydoc). See AtmoPy web page: http://www.enpc.fr/cerea/polyphemus/atmopy.html.

Other online resources:

1. http://diveintopython.org/, learning Python (most useful chapters: 2, 3, 4 and 6);

2. http://docs.python.org/, documentations about Python;

3. http://www.scipy.org/Tentative NumPy Tutorial, introduction to NumPy;

4. http://matplotlib.sourceforge.net/, Matplotlib website, see Sections “Tutorial” and “Screen-
shots”;

5. http://www.scipy.org/, SciPy library which includes many scientific modules (linear
algebra, optimization, etc.).

7.2 Postprocessing for Gaseous Species

7.2.1 Configuration File

The configuration file simulation.cfg is needed for disp.py and evaluation.py.
Here is a brief explanation of the various options provided in simulation.cfg but more

details can be found in the file itself for some options.

[input]

file Binary file with the results to postprocess.
multiple file Boolean stating whether several files are used.
t min Initial date of the binary file(s), in format YYYYMMDD or

YYYYMMDDHH.
Delta t Time step in hours.
Nt Number of time step in the binary file(s).
x min Abscissa of the center of the lower-left cell (longitude in degrees).
Delta x Step length along x, in degrees (longitude).
Nx Number of cells along x (integer).
y min Ordinate of the center of the lower-left cell (latitude in degrees).
Delta y Step length along y, usually in degrees (latitude).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
station file File describing the stations.
station file type Type of station file (Emep, Airbase, BDQA, Pioneer).
obs dir Directory where observations are stored.

[output]

station Name of the station for which concentrations and observations are
displayed.

7.2. POSTPROCESSING FOR GASEOUS SPECIES 129

t range Dates for which concentrations and observations are displayed.
concentrations What kind of concentrations are displayed: hourly, daily or peak

concentrations?
paired Should peak concentrations be paired in time?
daily basis In case daily concentrations are chosen, are observations provided

on a daily basis?
y range If two numbers are provided, they define the axis range along y

(and along x for scatter plots). If only one number is provided,
the axis ranges are automatically set.

scatter Is there a scatter plot? See the configuration file for the various
options.

meas style Style for the display of measurements.
sim style Style for the display of simulated data.
select station Which stations are involved in statistical measures? Either set

to single for a single station (defined in station), all for all
stations or a couple Field-Value for all stations for which Field is
equal to Value.

measure Statistical measures to be applied to data (see configuration file
for all measures available).

cutoff All observations below cutoff are discarded.
ratio All stations for which the ratio between the number of available

observations and the total number of time steps is below ratio

are discarded. For instance, if ratio is set to 0.3, stations with
over 70% of missing observations are discarded.

output Type of the output (summary, statistics for all stations or results
written in a file).

[file list]

List of files used if multiple file is set to yes.

[legend]

List of the legends associated to the files in [file list] (in the
same order).

7.2.2 Script evaluation.py

Script evaluation.py is meant to assess the performances of a chemistry-transport model
(CTM). Results of the CTM are compared to measurements at stations and statistics on the
differences are computed. The output of the script is presented on screen or can be saved in a
file.

7.2.3 Script disp.py

This script written in Python allows to display concentrations and observations at the sta-
tion station with regard to the time. Measurements are displayed with the style defined in
meas style and simulation results with sim style.

130 CHAPTER 7. POSTPROCESSING

7.3 Liquid water content diagnosis

The post-processing program ∼/polyphemus/postprocessing/water plume/water plume.cpp

uses meteorological data and a concentration field of water (liquid and vapor) and diagnoses the
proportion of liquid water. It is launched with two configuration files water plume.cfg and
general.cfg (which can be merged into a single configuration file) and a date.

7.3.1 Configuration File: water plume.cfg

[simulation]

Date Simulation first day.
t min Beginning time (in seconds) since midnight.
Delta t Simulation time step.
Nt Simulation number of time steps.
PlumeWater File containing the simulation results (total water concentration).
Factor Conversion factor to be applied to the water concentration field to

convert it into g m−3.
[meteo]

Path Path to the meteorological data files.
Temperature Temperature file.
Pressure Pressure file.
SpecificHumidity Specific humidity file.
LiquidWaterContent Liquid water content file.

[parameters]

source temperature Liquid water potential temperature (in K) at source.
source water content Total water content at the source (mass fraction).

[output]

LiquidWaterContent Output file name: file containing the field of liquid water mass
fraction.

Note that the output liquid water content is the sum of plume liquid water content (that is,
emitted by the source) and of ambient liquid water content (already in the atmosphere). It is a
mass fraction: g of liquid water kg of air with water vapor.

The water content diagnosis is done at each simulation time step for the whole domain. The
domain description is contained in general.cfg. Note that you may have to change the number
of vertical levels in general.cfg, in case not all levels where saved during the simulation.

7.4 Aerosol Postprocessing

7.4.1 Configuration File

The configuration file simulation aerosol.cfg is the same as simulation.cfg described pre-
viously, where aerosol parameters are added:

[input]

Nbins Number of size bins.
computed If yes, the bin bounds are computed using a logarithmic law. If

no, they are given in a file.

7.4. AEROSOL POSTPROCESSING 131

Dmin, Dmax If bin bounds are computed, the minimum and the maximum di-
ameters.

file bounds If bin bounds are given in a file, the name of the file.
bin index shift Number of the first bin (typically 0 or 1).
primary Names of the primary species in the model.
inorganics Names of the inorganic species in the model.
organics Names of the organic species in the model.
primary names Real names of the primary species (to be displayed).
inorganics names Real names of the inorganic species (to be displayed).
output species Aggregated data in output (PM10, PM2.5, total mass for each

chemical component, total mass and number in each bin).
with organics If yes, total masses will take into account organic species.
graph type Graphs that will be displayed when launching graph aerosol.py

(chemical composition, mass and number distribution, time series).
graphs at station If yes, the graphs will be displayed for the simulation at a given

station. If no, graphs will be an average over the domain defined
by i range and j range.

i range First and last indices in x direction for the considered domain.
j range First and last indices in y direction for the considered domain.
log plot If yes, the mass and number distributions will be displayed with a

log scale for diameters.
directory list List of directories where outputs are, the aggregated data will be

written in a file in the same directory as the output.

The file simulation aerosol.cfg is used by scripts init aerosol.py and graph aerosol.py.

7.4.2 Script init aerosol.py

The outputs of the model for aerosols will be several files: <species> <number>.bin where
<species> is an aerosol chemical component (in [aerosol species], see Section 5.5.3) and
<number> is the index of the size bin. But often, measurements are aggregated data:

• PM10 and PM2.5 are the mass of aerosol with a diameter smaller than 10 µm and 2.5 µm
respectively,

• Total mass of one chemical component.

One can also be interested by the number of particles in each size bin (granulometry), or by the
mass distribution along the size bins. This will be done by the script graph aerosol.py, but
before you have to launch init aerosol.py by the command:

python init_aerosol.py simulation_aerosol.cfg

Then you can launch disp.py and evaluation.py with species such as PM10, PM2.5, PNA
(total mass for sodium), etc.

7.4.3 Script graph aerosol.py

You can launch graph aerosol.py by the command:

python graph_aerosol.py simulation_aerosol.cfg}

Then each desired graphs (specified in graph type section of the configuration file) will be
displayed in a different window.

132 CHAPTER 7. POSTPROCESSING

Appendix A

Polyphemus Eulerian Test-Case

The test case is available on Polyphemus site†1. In order to use the test-case, you should
download:

• The meteorological data file MM5-2004-08-09.tar.bz2. The file is not included in the
test-case so that it can be used for various applications and has not to be downloaded each
time.

• The archive TestCase-1.1-Eulerian.tar.bz2.

Note that you should have Polyphemus installed and working in order to use the test-case.

A.1 Preparing the Test-Case

The first step is to extract the archive TestCase-1.1-Eulerian.tar.bz2:

tar -xjvf TestCase-1.1-Eulerian.tar.bz2

The directory TestCase-1.1-Eulerian, referred to as TestCase in what follows, will be created.
It is divided in four subdirectories:

• data, which contains all precomputed data.

• raw data, which contains all data used for preprocessing. After preprocessing, the results
are stored in data to be used directly during the simulation.

• config, where configuration files are provided.

• results, where the results of the simulation are stored.

In addition a file version is included to indicate for which version of Polyphemus the test-case
is designed, and which versions of the libraries are needed.

MM5-2004-08-09 should be extracted and then placed in raw data.

tar -xjvf MM5-2004-08-09.tar.bz2

mv MM5-2004-08-09 TestCase/raw_data/MM5/

Now you have all data necessary to perform preprocessing for the ground and for meteorological
data. All other data (emissions, deposition velocities . . .) are provided and ready-to-use.

†1http://www.enpc.fr/cerea/polyphemus/

133

134 APPENDIX A. POLYPHEMUS EULERIAN TEST-CASE

A.2 Modifying the General Configuration File

The file general.cfg is used by all preprocessing programs and as such must be the first file
you modify when performing preprocessing. Make sure to modify and use the file provided in
the directory TestCase/config. Here is a copy of this file:

[general]

Home: /u/cergrene/a/ahmed-dm

Path_to_test_case: <Home>/TestCase-1.1-Eulerian

Path_to_polyphemus: <Home>/Polyphemus-1.1

Directory_raw_data: <Path_to_test_case>/raw_data

Directory_computed_fields: <Path_to_test_case>/data

Directory_ground_data: <Directory_computed_fields>/ground

Programs: <Path_to_polyphemus>/preprocessing

[domain]

Date: 2004-08-09

Delta_t = 1.0

x_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Nz = 5

Vertical_levels: <Programs>/levels.dat

Replace Home by the path to your home directory, Path to test case by the path to
TestCase and Path to polyphemus by the path to Polyphemus.

Other paths needed for the simulation depend on these ones so modifying them should be
sufficient. The domain is defined for a simulation over Europe. Make sure that the date is
2004-08-09 (date for which meteorological raw data is provided).

It is advised to put both TestCase and Polyphemus in your home directory, as this is what
will be used below.

A.3 Computing Ground Data

Ground data are not necessary to perform the simulation but they are needed to compute the
vertical diffusion using Troen and Mahrt parameterization. If you wish to use Louis parameter-
ization, this step is not necessary and you can go to Section A.4.

A.3.1 Land Use Cover

Compile and execute luc-usgs (from your Polyphemus directory):

cd Polyphemus/preprocessing/ground/

make luc-usgs

cd ~/TestCase/

~/Polyphemus/preprocessing/ground/lus-usgs config/general.cfg config/luc-usgs.cfg

The output on screen will be:

A.4. COMPUTING METEOROLOGICAL DATA 135

Reading configuration files... done.

Memory allocation for data fields... done.

Reading LUC data... done.

Building LUC data on output grid... done.

Writing output data... done.

A.3.2 Roughness

The preprocessing program roughness needs as input data the results of luc-usgs.
Compile and execute roughness.

cd Polyphemus/preprocessing/ground/

make roughness

cd ~/TestCase/

~/Polyphemus/preprocessing/ground/roughness config/general.cfg

config/roughness.cfg

The output on screen will be:

Reading configuration files... done.

Reading roughness data... done.

Writing roughness binary ... done.

A.4 Computing Meteorological Data

No modification to configuration file MM5-meteo.cfg should be necessary but make sure to use
the version of this file included in directory TestCase and not in directory Polyphemus.

You can open the file and check that Database MM5-meteo is the path to the file MM5-2004-08-09,
where the date is represented by &D. For details about the other options available in the config-
uration file, see Section 3.4.5.

Then compile MM5-meteo:

cd ~/Polyphemus/preprocessing/meteo/

make MM5-meteo

and execute it:

cd ~/TestCase/

~/Polyphemus/preprocessing/meteo/MM5-meteo config/general.cfg config/MM5-meteo.cfg &D

In the command line given before, repolace &D by the date (2004-08-09). It has not been done
because the line would be too long otherwise.

The output on screen will be:

Reading configuration files... done.

Memory allocation for grids... done.

Memory allocation for output data fields... done.

Conversion from sigma levels to heights... done.

Converting from latlon to MM5 indices... done.

Applying transformation to read fields... done.

136 APPENDIX A. POLYPHEMUS EULERIAN TEST-CASE

Computing pressure... done.

Computing surface pressure... done.

Interpolations... done.

Computing Richardson number... done.

Computing attenuation...

+ Computing relative humidity and critical relative humidity... done.

+ Computing cloud profile... done.

+ Computing attenuation... done.

Linear interpolations...

+ Attenuation

+ SpecificHumidity

+ Liquid Water content

+ CloudHeight

+ SurfaceTemperature

+ SkinTemperature

+ SoilWater

+ SensibleHeat

+ Evaporation

+ SolarRadiation

+ Rain

+ FrictionModule

+ BoundaryHeight

done.

Computing Kz... done.

Computing PAR... done.

Writing data... done.

Note that in that case meteorological data has been generated for 23 hours, but emissions
data are only available for this length of time, so it is not necessary to generate more meteoro-
logical data.

If you want to compute vertical diffusion using Troen and Mahrt parameterization, compile
and execute Kz TM.

cd ~/Polyphemus/preprocessing/meteo/

make Kz_TM

cd ~/TestCase/

~/Polyphemus/preprocessing/meteo/Kz_TM config/general.cfg config/MM5-meteo.cfg &D

As before, replace &D by the date.

The output on screen will be:

Reading configuration files... done.

Memory allocation for data fields... done.

Extracting fields... done.

Computing Kz... done.

Writing output files... done.

A.5. LAUNCHING THE SIMULATION 137

A.5 Launching the Simulation

A.5.1 Modifying the Configuration File

You should check and modify polair3d.cfg if necessary. You have to check the paths
(in particular check that the data and saver files are config/polair3d-data.cfg and
config/polair3d-saver.cfg) and to make sure that the date for the simulation is 20040809
(date for which the meteorological data have been computed).

A.5.2 Modifying the Data File

Check config/polair3d-data.cfg. If you decided to use Louis parameterization for vertical
diffusion, modify the file associated to VerticalDiffusion in the section [meteo].

As before, check the paths and dates. In particular, if the dates in any section (except for
[photolysis], see below) are not right, you can have an error message.

ERROR!

An input/output operation failed in FormatBinary<T>::

Read(ifstream& FileStream, Array<TA, N>& A).

Unable to read 42900 byte(s). The input stream is empty.

Indeed, input data can be computed for several days, so the program will discard the data
for the days between Date min in a section of polair3d-data and Date min for the simulation.
Here, as the data has been computed for one day only, it would be as if the data files were
empty, hence this error.

Remark In the case of photolysis, data are provided for a whole year and Date min must be
2004-01-01 12.

A.5.3 Modifying Saver File

The file polair3d-saver.cfg should be ready to use. You can modify the species to save (you
are advised against saving concentrations for all species). You can choose to save instantaneous
concentrations or concentrations averaged over Interval length by setting Averaged to no or
yes respectively.

A.5.4 Simulation

Compile the driver.

cd ~/Polyphemus/driver

make polair3d

Launch the simulation from TestCase:

cd ~/TestCase/

~/Polyphemus/driver/polair3d config/polair3d.cfg

138 APPENDIX A. POLYPHEMUS EULERIAN TEST-CASE

A.6 Visualizing Results

A.6.1 Modifying Configuration File

Modify results/disp.cfg if necessary (in particular if you have modified polair3d-saver.cfg).

[input]

Number of time steps for which concentrations are saved.

Nt = 22

Domain description for x and y.

x_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Number of levels for which concentration are saved.

Nz = 5

file: O3.bin

A.6.2 Using IPython

For details see Section 7.1.3. Remember that the directory atmopy should be in your $PYTHONPATH.
Launch IPython and then type in command line (comments starting with “#”have been added
to explain the meaning of each line):

cd results/

ipython

from atmopy.display import * # Import to the interactive session all

functions from the module ’display’

of ’atmopy’

m = getm(’disp.cfg’) # Create the map.

d = getd(’disp.cfg’) # Create a data with the results.

dispcf(m, d[5,0]) # Display the data for the 8th time step

and the first vertical level (remember

that indices start at 0).

The image obtained is Figure A.1.
You can create other data if you like to visualize concentrations for other species. In that

case, the map has already been created and less information is needed to create the data. In
particular it is not necessary to provide a file disp.cfg:

d2 = getd(filename = ’NO.bin’, Nt = 22, Nz = 5, Ny = 33, Nx = 65)

disp(m, d2[5,0])

A.6. VISUALIZING RESULTS 139

-10 -5 0 5 10 15 20

42

44

46

48

50

52

54

56

0

20

40

60

80

100

120

140

160

Figure A.1: Figure obtained using IPython and AtmoPy (unit is µg m−3)

140 APPENDIX A. POLYPHEMUS EULERIAN TEST-CASE

Appendix B

Polyphemus Gaussian Test-Case

This document explains how to proceed to perform simulations using the test case for Gaussian
models provided with Polyphemus.

When the archive TestCase-1.1-Gaussian.tar.bz2 is extracted a directory TestCase-1.1-Gaussian/

is created. It is referred to below as TestCase.

tar -xjvf TestCase-1.1-Gaussian.tar.bz2

The subdirectory config/ holds all configuration files necessary and the subdirectory results/

is meant to store the results of simulations. It is divided in three subdirectories (one for each pos-
sible simulation) : puff line/ for the Gaussian puff model and a gaseous line source, puff aer/

for the puff model with point sources of gaseous and aerosol species, and plume/ for the Gaussian
plume model with gaseous species only. In each of those subdirectory a python program which
allows to visualize some results easily can be found.

To launch the test cases, you do not need to modify the configuration files. In the following
commands, ∼/Polyphemus and ∼/TestCase have to be replaced, if necessary, by the paths to
the Polyphemus directory and test case directory respectively.

B.1 Preprocessing

Prior to use Gaussian models, you need to compute scavenging coefficients and deposition ve-
locities for the various species. This is achieved by using gaussian-deposition aer.

First compile it :

cd ~/Polyphemus/preprocessing/dep/

make gaussian-deposition_aer

Then run it from the test case directory:

cd ~/TestCase/config

~/Polyphemus/preprocessing/dep/gaussian-deposition_aer

gaussian-deposition_aer.cfg

The output on screen will be :

Reading configuration file... done.

Reading meteorological data... done.

141

142 APPENDIX B. POLYPHEMUS GAUSSIAN TEST-CASE

Reading species... done.

Reading diameter... done.

Computation of the scavenging coefficients... done.

Computation of the deposition velocities..done.

Writing data... done.

The file gaussian-meteo aer.dat has been created in the directory ∼/TestCase/config/.
It will be used for puff simulations with aerosol species and with line source.

Note that if your simulation only involves gaseous species, you can use the preprocessing
program gaussian-deposition. Here we use gaussian-deposition aer because its output
can be used for simulations with or without aerosol species.

B.2 Discretization

This step is only necessary for the simulation with a line source. Its aim is to discretize this
source into a series of puffs. To do so, compile the preprocessing program discretization:

cd ~/Polyphemus/preprocessing/emissions/

make discretization

Then run it from the test case directory:

cd ~/TestCase/config

~/Polyphemus/preprocessing/emissions/discretization

discretization.cfg

The output on screen will be:

Reading configuration file... done.

Reading trajectory data... done.

Length of the trajectory: 48.0278

Number of points on the trajectory: 28

Writing source data... done.

The file puff-source-discretized.dat has been created in the directory ∼/TestCase/config.
It contains a series of puffs representing the discretized line source.

B.3 Simulations

B.3.1 Plume

This simulation uses the program plume, which is the program for the Gaussian plume model.
It uses the following data:

• Gaseous species : Caesium, Iodine.

• Sources : 2 point sources for Iodine, one point source for Caesium.

• Meteorological situations : 4 situations, rotating wind with an increasing speed (0.1 m s−1,
2 m s−1, 5 m s−1 and 10 m s−1).

B.3. SIMULATIONS 143

• Urban environment.

The simulation uses the following files :

• plume.cfg gives the simulation domain, the options and the paths to the other files.

• gaussian-levels.dat gives the vertical levels.

• gaussian-species aer.dat gives the species data (species names and radioactive half-
lives are used here).

• gaussian-meteo.dat gives all meteorological data. It does not contain scavenging coef-
ficients or deposition velocities since the simulation will not take these processes into ac-
count. Therefore, it was not necessary to use the preprocessing program gaussian-deposition

to create this file.

• plume-source.dat contains all the data on stationary sources.

• plume-saver.cfg contains the options and paths to save the results.

Compile the program plume :

cd ~/Polyphemus/driver/

make plume

Then execute it from ∼/TestCase/config :

cd ~/TestCase/config

~/Polyphemus/driver/plume plume.cfg

The output on screen will be :

Temperature Wind angle Wind velocity Stability

Case #0

15 -100 0.5 D

Case #1

10 -5 2 D

Case #2

10 20 5 D

Case #3

10 60 10 D

Results are stored in ∼/TestCase/results/plume/.

B.3.2 Puff with Aerosol Species

The simulation uses puff aer, which is the program for puffs with aerosol species, and the
following data:

• Gaseous species : Caesium, Iodine.

• Aerosol species : aer1, aer2.

• Sources : 1 point source per species.

• Meteorological situation : 1 situation with wind speed of 2 m s−1 and rain.

144 APPENDIX B. POLYPHEMUS GAUSSIAN TEST-CASE

• Urban environment.

The simulation uses the following files:

• puff aer.cfg gives the simulation domain, options and the paths to the other files.

• diameter.dat gives the aerosol diameters.

• gaussian-levels.dat gives the vertical levels.

• gaussian-species aer.dat gives the species data (only species names are used, since all
other data have been used during preprocessing).

• gaussian-meteo aer.dat gives all meteorological data and data on scavenging and depo-
sition. It was created during preprocessing (see Section B.1).

• puff-source aer.dat contains all the data on gaseous and aerosol sources.

• puff-saver aer.cfg contains the options and paths to save the results.

Compile the program puff aer:

cd ~/Polyphemus/driver/

make puff_aer

Then execute it from TestCase/config:

cd ~/TestCase/config

~/Polyphemus/driver/puff_aer puff_aer.cfg

Results are stored in ∼/TestCase/results/puff aer/.

B.3.3 Puff with Line Source

The simulation uses puff, which is the program for puffs with gaseous species only, and the
following data:

• Gaseous species : CO2.

• Source : 1 line source.

• Meteorological situations : 1 situation.

• Urban environment.

The simulation uses the following files:

• puff.cfg gives the simulation domain, options and the paths to the other files. It also
contains the species name.

• gaussian-levels.dat gives the vertical levels.

• gaussian-meteo aer.dat gives all meteorological data. Scavenging coefficients and de-
position velocities are not used here (since they do not correspond to the species of this
simulation). Loss processes are therefore not taken into account.

B.4. RESULT VISUALIZATION 145

• puff-source-discretized.dat gives data on the discretized source. It has been created
using program discretization (see Section B.2).

• puff-saver.cfg gives the options and paths to save the results.

Compile the program puff:

cd ~/Polyphemus/driver/

make puff

Then execute it from TestCase/config:

cd ~/TestCase/config

~/Polyphemus/driver/puff puff.cfg

Results are stored in ∼/TestCase/results/puff line/.

B.4 Result Visualization

To visualize the results of a simulation, use the interactive python interpreter IPython (launched
with the command ipython). For details see Section 7.1.3.

B.4.1 Gaussian Plume

Launch IPython from the plume results directory:

cd ~/TestCase/results/plume

ipython

Import the modules that are needed for results visualization with the command:

>> import atmopy

>> from atmopy.display import *

Then, import the concentration field you want to visualize:

>> d = getd(filename = ’Iodine.bin’, Nt=4, Nz=2, Ny=200, Nx=200)

Nt is normally the number of time steps. Here, as it is a stationary simulation, it should be
equal to 1. However, as there are four meteorological situations, we have here Nt = 4, as each
situation is similar to a time step for an unstationary simulation. It would be the same if it
was an unstationary simulation (puff model) with several meteorological situations. If there
are 10 time steps, and 4 meteorological situations, you will put Nt = 40. The first ten time
steps represent the first situation, from 10 to 20 you have the concentration field for the second
situation, and so on . . .

To visualize the concentration over the domain for the first situation and add a colorbar, use
the following commands:

>> contourf(d[0,0])

>> colorbar()

You should obtain the Figure B.1.
You can visualize the concentration field for the other meteorological situations. You should

see that the wind is turning with increasing speed.

146 APPENDIX B. POLYPHEMUS GAUSSIAN TEST-CASE

0 50 100 150
0

50

100

150

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8
x1e-21

Figure B.1: Plume visualization for the first meteorological situation. Ground concentration in
µ g·m−3.

B.4.2 Gaussian Puff with Aerosol Species

You can go into the directory ∼/TestCase/results/puff aer/ and launch ipython from there,
or either change directory from the ipython shell:

>> cd ~/TestCase/results/puff_aer/

>>

By doing that you ensure that you do not have to import atmopy again. However, when quitting
ipython, you will be back in the directory from where it was launched.

To visualize the ground concentration on the domain at time step t, use the command:

>> d = getd(filename = ’aer1_0.bin’, Nt=80, Nz=2, Ny=30, Nx=55)

>> contourf(d[t, 0])

To visualize several time steps on the same figure, just use contourf several times. If you want
to clear the figure, use the command clf(). Figure B.2 gives an example of what you can
obtain.

B.4.3 Gaussian Puff with Line Source

To visualize results, go to the directory ∼/TestCase/results/puff line/ and use the com-
mands getd and contourf. Figure B.3 provides examples of what you can obtain.

B.4. RESULT VISUALIZATION 147

0 10 20 30 40 50
0

5

10

15

20

25

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8
x1e-21

Figure B.2: Puff visualization at time steps 0, 30 and 79 for species aer1 and first diameter.
Ground concentration in µ g·m−3.

0 10 20 30 40 50
0

5

10

15

20

25

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4
x1e+4

(a) Ground concentration at t = 0.1 s

0 10 20 30 40 50
0

5

10

15

20

25

0

400

800

1200

1600

2000

2400

2800

3200

(b) Ground concentration at t = 0.3 s

0 10 20 30 40 50
0

5

10

15

20

25

0

400

800

1200

1600

2000

2400

2800

3200

(c) Ground concentration at t = 0.5 s

0 10 20 30 40 50
0

5

10

15

20

25

0

400

800

1200

1600

2000

2400

2800

3200

(d) Ground concentration at t = 0.8 s

Figure B.3: Puff line visualization at time steps 10, 30, 50 and 79. Ground concentration in
µ g·m−3.

148 APPENDIX B. POLYPHEMUS GAUSSIAN TEST-CASE

Bibliography

Arstila, H., Korhonen, P., and Kulmala, M. (1999). Ternary nucleation: kinetics and application
to water-ammonia-hydrochloric acid system. Journal of Aerosol Science, 30(2):131–138.

Debry, E., Fahey, K., Sartelet, K., Sportisse, B., and Tombette, M. (2007). Technical Note: A
new SIze REsolved Aerosol Model (SIREAM). Atmospheric Chemistry and Physics, 7:1,537–
1,547.

Fahey, K. M. and Pandis, S. N. (2003). Size-resolved aqueous-phase atmospheric chemistry in a
three-dimensional chemical transport model. Journal of Geophysical Research, 108(D22).

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie,
X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P. (2003).
A global simulation of tropospheric ozone and related tracers: description and evaluation of
MOZART, version 2. Journal of Geophysical Research, 108(D24).

Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-
Layer Meteorology, 17:187–202.

Mallet, V., Quélo, D., Sportisse, B., Ahmed de Biasi, M., Debry, É., Korsakissok, I., Wu,
L., Roustan, Y., Sartelet, K., Tombette, M., and Foudhil, H. (2007). Technical Note: The
air quality modeling system Polyphemus. Atmospheric Chemistry and Physics Discussions,
7(3):6,459–6,486.

Nenes, A., Pandis, S. N., and Pilinis, C. (1998). ISORROPIA: A new thermodynamic equilibrium
model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4(1):123–152.

Njomgang, H., Mallet, V., and Musson-Genon, L. (2005). AtmoData scientific documentation.
Technical Report 2005-10, CEREA.

Rosenbrock, H. H. (1963). Some general implicit processes for the numerical solution of differ-
ential equations. The Computer Journal, 5:329–330.

Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt,
C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M.,
Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G. (1999). Inventorying emissions
from nature in Europe. Journal of Geophysical Research, 104(D7):8,113–8,152.

Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S. (1997). A new mechanism for regional
atmospheric chemistry modeling. Journal of Geophysical Research, 102(D22):25,847–25,879.

Troen, I. and Mahrt, L. (1986). A simple model of the atmospheric boundary layer; sensitivity
to surface evaporation. Boundary-Layer Meteorology, 37:129–148.

149

150 BIBLIOGRAPHY

Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and
Laaksonen, A. (2002). An improved parameterization for sulfuric acid–water nucleation rates
for tropospheric and stratospheric conditions. Journal of Geophysical Research, 107(D22).

Wesely, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in
regional-scale numerical models. Atmospheric Environment, 23:1,293–1,304.

Zhang, L., Brook, J. R., and Vet, R. (2003). A revised parameterization for gaseous dry depo-
sition in air-quality models. Atmospheric Chemistry and Physics, 3:2,067–2,082.

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S. (2002). Modelling gaseous
dry deposition in AURAMS: a unified regional air-quality modelling system. Atmospheric
Environment, 36:537–560.

