
ECHAM5/MESSy (Version 0.9) User Manual

Patrick Jöckel & Rolf Sander
joeckel@mpch-mainz.mpg.de, sander@mpch-mainz.mpg.de

Air Chemistry Department
Max-Planck Institute of Chemistry

PO Box 3060, 55020 Mainz, Germany
www.messy-interface.org

Version from January 31, 2005

Preamble

“When you work on a software project, one of your short-term goals is to solve a problem at hand. If you are doing this
because someone asked you to solve the problem, then all you need to do to look good in per eyes is to deliver a program
that works. Nevertheless, regardless of how little person may appreciate this, doing just that is not good enough. Once
you have code that gives the right answer to a specific set of problems, you will want to make improvements to it.
As you make these improvements, you would like to have proof that your code’s known reliability hasn’t regressed.
Also, tomorrow you will want to move on to a different set of related problems by repeating as little work as possible.
Finally, one day you may want to pass the project on to someone else or recruit another developer to help you out with
certain parts. You need to make it possible for the other person to get up to speed without reinventing your efforts. To
accomplish these equally important goals you need to write good code.

. . .

Please do not hold the opinion that contributions in science and engineering are ’true’ contributions and software
development is just a ’tool’. This bigotted attitude is behind the thousands of lines of ugly unmaintainable code that goes
around in many places. Good software development can be an important contribution in its own right, and regardless of
what your goals are, please appreciate it and encourage it.” (http://autotoolset.sourceforge.net/tutorial.html)

A very useful document is available from the UK Met Office (UKMO) at http://www.meto.govt.uk/research/nwp/
numerical/fortran90/f90_standards.html. The standards described for MESSy and in the UKMO document are not
just “technical” and “cosmetical” contributions to the code. They are of prime importance to develop a well documented
code that is easy to understand and therefore also easy to debug if necessary. Ignoring the conventions or delaying their
implementation would slow down any further development, the evaluation phase, and the debugging-phase of the model
setup. Therefore, code won’t be accepted for the official MESSy-versions unless it fulfills our conventions.

joeckel@mpch-mainz.mpg.de
sander@mpch-mainz.mpg.de
www.messy-interface.org
http://autotoolset.sourceforge.net/tutorial.html
http://www.meto.govt.uk/research/nwp/numerical/fortran90/f90_standards.html
http://www.meto.govt.uk/research/nwp/numerical/fortran90/f90_standards.html

2 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

Contents

1 Introduction 3

2 The ECHAM5/MESSy model structure 3

2.1 Implementation of the MESSy interface . 3
2.1.1 The base model layer (BML) . 3
2.1.2 The base model interface layer (BMIL) . 3
2.1.3 The submodel interface layer (SMIL) . 6
2.1.4 The submodel core layer (SMCL) . 6
2.1.5 The user interface . 7

2.2 The ECHAM5/MESSy call tree . 8
2.2.1 The initialization phase . 8
2.2.2 The time integration phase . 8
2.2.3 The finalizing phase . 9

2.3 Memory management and data export . 9
2.4 Tracers . 9

2.4.1 Overall Framework for tracers (tracer sets) . 9
2.4.2 Tracer access of submodels . 10
2.4.3 Tracer initialization . 10

2.5 Available submodels . 11
2.6 Directory structure . 11
2.7 Input files . 11
2.8 MESSy utilities . 11

2.8.1 User utilities . 11
2.8.1.1 xecham . 11
2.8.1.2 mchlog . 11
2.8.1.3 nc2mc . 11
2.8.1.4 ncdx . 11
2.8.1.5 nc2dxmc . 11
2.8.1.6 ncregrid . 11

2.8.2 Auxiliary utilities . 11
2.8.2.1 efchk, lst2log.gawk, efchk-sum . 11
2.8.2.2 messy check . 12
2.8.2.3 zip.sh, zip1r.sh, zipall.sh . 12
2.8.2.4 sfmakedepend.pl . 12

3 Installation of ECHAM5/MESSy 12

4 Running ECHAM5/MESSy 13

5 ECHAM5/MESSy coding guidelines 14

5.1 Contribution of new submodels . 14
5.2 File names and directories . 14
5.3 Data exchange via Fortran95 USE statements . 14
5.4 Data exchange via the data transfer and output interface and tracers . 14
5.5 Parallel environment . 14
5.6 Labels . 15
5.7 Loops . 15

6 Outlook 15

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 3

1 Introduction

The highly structured Modular Earth Submodel System
(MESSy) is used to couple several submodels to the gen-
eral circulation model (GCM) ECHAM5 (Roeckner et
al., The atmospheric general circulation model ECHAM
5. PART I: Model description, MPI-Report, 349, 2003
(http://www.mpimet.mpg.de/en/extra/models/echam/
mpi_report349.pdf)), thus extending it into a fully cou-
pled chemistry-climate model. ECHAM5/MESSy is imple-
mented to run in parallel using the Message Passing Inter-
face (MPI, http://www-unix.mcs.anl.gov/mpi/index.
html, http://www-unix.mcs.anl.gov/mpi/mpich/).

Information on the latest development status of MESSy
and the ECHAM5/MESSy activities (including updates
of this manual), are available on the MESSy web-pages
(http://www.messy-interface.org). Furthermore, it is
recommended to read the files README_MESSY, CHANGELOG,
and WARNINGS of the ECHAM5/MESSy distribution.

This user manual supplies basic information on the struc-
ture of the ECHAM5/MESSy code and on how to use the
comprehensive model setup. Further information on spe-
cific submodels can be found on the MESSy web-pages. If
this is not sufficient, contact the submodel maintainers.

For questions, bug-reports, etc., with respect to the
ECHAM5/MESSy setup, please contact the mailing ad-
dress messy@mpch-mainz.mpg.de.

Section 2 describes in detail the model structure of
ECHAM5/MESSy and its components. Understanding its
contents is a prerequisite for modifying any model code
or writing an additional submodel. However, users who
only want to run the model can skip it and go directly
to sections 3. and 4. Submodel developers, who want to
contribute their code also need to read section 5.

2 The ECHAM5/MESSy model
structure

2.1 Implementation of the MESSy inter-
face

The general description of the four layer MESSy inter-
face structure and the MESSy coding conventions can
be found in Jöckel et al. [2005]. Here, the specific im-
plementation of MESSy for the GCM ECHAM5 is de-
scribed. A detailed overview of the implementation can
be found in the accompanying ECHAM5/MESSy reference
card (messy_echam5_ref.pdf).

2.1.1 The base model layer (BML)

The GCM ECHAM5 serves as the base model, i.e., consti-
tutes the base model layer (BML) of the MESSy implemen-
tation. Information about the original ECHAM5 can be
found on the web-page (http://www.mpimet.mpg.de/en/
extra/models/echam/echam5.php), which is also accessi-
ble via the MESSy web-pages. Additional modifications

/ extensions of the base model ECHAM5 are also docu-
mented on the MESSy web-pages.

The main entry points of MESSy in ECHAM5 are shown
in Figure 1, which gives a simplified overview of the upper
three MESSy layers depicted as a flow diagram. According
to the MESSy standard, the entry points in ECHAM5 are
encapsulated in preprocessor directives:

#ifdef MESSY
CALL messy_<...>

#endif

The specific role of these main entry points is explained in
section 2.2 below.

2.1.2 The base model interface layer (BMIL)

The MESSy base model interface layer comprises the fol-
lowing files:

• central submodel control interface:

– messy_main_switch.f90 is the SMCL of the
generic submodel main switch. It provides
one global switch for each individual submodel.
These switches are imported from the CTRL-
namelist in the file MESSy.nml. MESSy.nml is
written by the run-script xmessy where the user
selects the submodels to be activated (user in-
terface, see section 2.1.5).

– messy_main_switch_e5.f90 is the SMIL of the
generic submodel main switch. It provides the
PUBLIC subroutine for the overall MESSy initial-
ization called by messy_main_control_e5.f90.
Here, the distribution of the submodel switches
to the different processes in a parallel environ-
ment is performed.

– messy_main_control_e5.f90 (Figure 1) is the
SMIL of the generic submodel main control.
It provides the subroutines for the main entry
points from ECHAM5 into MESSy. The indi-
vidual MESSy submodels are called from here.
A specific submodel is only called if it has been
activated (user interface, see section 2.1.5). Ta-
ble 1 shows in detail how these MESSy main
entry points are embedded in the call tree of
ECHAM5.

• data transfer/export interface: Data export of results
and data dumping for the restart handling in chain
experiments are currently based on the ECHAM5
stream implementation (see section 2.3). In partic-
ular:

– messy_main_tracer.f90 is the SMCL of the
generic submodel main tracer. It constitutes
a completely new, base model independent im-
plementation (different from that in the origi-
nal ECHAM5 !) for handling of chemical com-
pounds in arbitrary representations (see sec-
tions 2.3 and 2.4).

http://www.mpimet.mpg.de/en/extra/models/echam/mpi_report349.pdf
http://www.mpimet.mpg.de/en/extra/models/echam/mpi_report349.pdf
http://www-unix.mcs.anl.gov/mpi/index.html
http://www-unix.mcs.anl.gov/mpi/index.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.messy-interface.org
messy@mpch-mainz.mpg.de
messy_echam5_ref.pdf
http://www.mpimet.mpg.de/en/extra/models/echam/echam5.php
http://www.mpimet.mpg.de/en/extra/models/echam/echam5.php

4 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

EC H AM b ase mo d el

messy_new_tracer

messy _main_

c o nt ro l_e5.f90

start

 init_memory messy_init_memory

xtini messy_init_tracer

messy_global_start

physc -> vdiff messy_vdiff

physc messy_physc

scan1

messy_free_memory

end

xxx_init_memory

xxx_init_tracer

xxx_physc

xxx_global_start

xxx_initialize

xxx_new_tracer

messy_local_end

messy _x x x _e5.f90

xxx_vdiff

initialize

scan1

free_memory

initrac

messy_initialize

scan1 messy_global_end

xxx_local_end

xxx_global_end

xxx_free_memory

B M L B M I L S M I L

messy_init_coupling xxx_init_coupling

scan1 messy_local_start xxx_local_start

control

physc messy_convec xxx_convec

tim
e

lo
op

lo
ca

l l
oo

p

Figure 1: Main entry points of MESSy in ECHAM5 shown for an arbitrary submodel called xxx.

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 5

Table 1: ECHAM5/MESSy call tree showing how the MESSy main control interface is embedded into ECHAM5.

master main Fortran program

p_start (mo_mpi.f90) start parallel processing

control

initialize

inidoc global netcdf attributes

messy_initialize (messy_main_control_e5.f90) initialize submodels, read CTRL and CPL

messy_new_tracer (messy_main_control_e5.f90) define tracers

init_memory (mo_memory_streams.f90)

messy_init_memory (messy_main_control_e5.f90) define 2D and 3D output streams

ioinitial or iorestart

messy_init_tracer (messy_main_control_e5.f90) initialize tracers

messy_init_coupling (messy_main_control_e5.f90) initialize coupling

stepon time loop
time_set (mo_time_control.f90)

scan1

prerad calculate parameters for radiation

solang_extended_const (m_solang.f90) calculate solar zenith angle

messy_global_start (messy_main_control_e5.f90) first global entry point

tf2, tf1 time filter

miscellaneous Fourier/Legendre/spectral calculations

advection of tracers

local loop
messy_local_start (messy_main_control_e5.f90) first local entry point

gpc grid point calculations

physc physics

geopot geopotential height

pres half-level pressure

presf full-level pressures

cover cloud cover
radiation

pres half-level pressure

presf full-level pressures

vdiff vertical diffusion

messy_vdiff (messy_main_control_e5.f90)

surftemp surface temperature

radheat radiation heating

gwspectrum

ssodrag

cucall

messy_convec (messy_main_control_e5.f90) convection

cloud

surf surface data

lake lake calculations
licetemp lake-ice temperature

ml_ocean mixed layer ocean

sicetemp sea-ice temperature

collect collect data for ocean model

hydrology_collect collect data for HD-model

messy_physc (messy_main_control_e5.f90) physics, chemistry

messy_local_end (messy_main_control_e5.f90) last local entry point

miscellaneous Fourier/Legendre/spectral calculations

messy_global_end (messy_main_control_e5.f90) last global entry point

out_streams (mo_grib.f90) print tracers and streams to netcdf file

time_reset (mo_time_control.f90)

close_output_streams (mo_grib.f90) at end only

free_memory (mo_memory_streams.f90) deallocate stream memory

messy_free_memory (messy_main_control_e5.f90) deallocate submodel memory

p_stop (mo_mpi.f90) stop parallel processing

master
p_start
mo_mpi.f90
control
initialize
inidoc
messy_initialize
messy_main_control_e5.f90
messy_new_tracer
messy_main_control_e5.f90
init_memory
mo_memory_streams.f90
messy_init_memory
messy_main_control_e5.f90
ioinitial
iorestart
messy_init_tracer
messy_main_control_e5.f90
messy_init_coupling
messy_main_control_e5.f90
stepon
time_set
mo_time_control.f90
scan1
prerad
solang_extended_const
m_solang.f90
messy_global_start
messy_main_control_e5.f90
tf2
tf1
messy_local_start
messy_main_control_e5.f90
gpc
physc
geopot
pres
presf
cover
radiation
pres
presf
vdiff
messy_vdiff
messy_main_control_e5.f90
surftemp
radheat
gwspectrum
ssodrag
cucall
messy_convec
messy_main_control_e5.f90
cloud
surf
lake
licetemp
ml_ocean
sicetemp
collect
hydrology_collect
messy_physc
messy_main_control_e5.f90
messy_local_end
messy_main_control_e5.f90
messy_global_end
messy_main_control_e5.f90
out_streams
mo_grib.f90
time_reset
mo_time_control.f90
close_output_streams
mo_grib.f90
free_memory
mo_memory_streams.f90
messy_free_memory
messy_main_control_e5.f90
p_stop
mo_mpi.f90

6 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

– messy_main_tracer_e5.f90 is the correspond-
ing SMIL, providing the base model dependent
setup, in particular the link to the data trans-
fer and export interface (currently the ECHAM5
stream implementation, see section 2.3) for flex-
ible data handling in parallel environments and
for data export. Currently, tracer sets in
GRIDPOINT and LAGRANGIAN representation are
used (see section 2.4).

– messy_main_data_e5.f90 is used for the two
way exchange of physical fields between the base
model (i.e., the GCM) and the submodels. It is
directly based on the data transfer and export
interface (currently the ECHAM5 stream imple-
mentation, see section 2.3).

– messy_main_constants_mem.f90 provides ba-
sic physical constants and machine precision
constants (KIND-parameters). Note that this file
is a memory file which contains neither functions
nor subroutines.

• data import interface: The data import in-
terface is based on the rediscretization tool
NCREGRID (http://www.mpch-mainz.mpg.de/
~joeckel/ncregrid) using netCDF files (http:
//www.unidata.ucar.edu/packages/netcdf/) as
input/output. The coupling to ECHAM5 is per-
formed by the following files:

– messy_ncregrid_interface.f90 provides the
grid specification (spatial resolution) from the
base model (ECHAM5) to NCREGRID (the
core for the rediscretization of gridded geo-
scientific data).

– messy_ncregrid_tools_e5.f90 provides stan-
dardized subroutines (i.e., a front end) which
can be used by the different submodels to im-
port external, gridded data from netCDF files.

• messy_main_tools.f90 and
messy_main_tools_e5.f90 provide the SMCL and
the SMIL of an additional generic submodel (tool-
box), which contains subroutines and functions (base
model independent and dependent, respectively)
shared by different submodels.

2.1.3 The submodel interface layer (SMIL)

The SMIL of a specific submodel named <submodel> com-
prises the following files and serves the following purposes:

• messy_<submodel>_e5.f90 is the name of the
submodel interface file (SMIL), which is located
in the messy/e5 subdirectory. This file pro-
vides the PUBLIC subroutines that are called
from the central management control interface
(messy_main_control_e5.f90). The MESSy nam-
ing convention for the subroutines is shown in Fig-
ure 1 for an arbitrary submodel named xxx. The
subroutines in this file must in general not contain
any parameters. Data transfer to/from the SMCL

of the specific submodel is preferably performed via
parameters of the SMCL subroutines / functions. As
an alternative, PUBLIC variables defined in the SMCL
files can be accessed via the Fortran95 USE statement.

• <submodel>_t.nml is a namelist file located in the
messy/nml subdirectory and is part of the user inter-
face (see section 2.1.5), controlling the initialization
of chemical species (= tracers) at the beginning of a
model run, using the data import interface.

• <submodel>.nml (see also sections 2.1.4 and 2.1.5)
is a namelist file located in the messy/nml subdirec-
tory and part of the user interface (see section 2.1.5).
Within the SMIL it performs two tasks:

– It contains the &CPL namelist, which holds the
specifications for coupling the submodel to the
base model and to other submodels.

– It contains further namelists (&RGTEVENTS and
®RID) for time dependent gridded bound-
ary condition import via the data import inter-
face (see NCREGRID documentation and the
MESSy web-pages for further details).

2.1.4 The submodel core layer (SMCL)

The SMCL of a specific submodel named <submodel> com-
prises the following files and serves the following purposes:

• messy_<submodel>.f90 is the name of the submodel
core file (SMCL), which is located in the messy/src
subdirectory. This file provides PUBLIC subrou-
tines which are called by the SMIL of the submodel
(messy_<submodel>_e5.f90). It further comprises
PRIVATE subroutines which are only used internally.
Data transfer to/from the SMIL of the specific sub-
model is preferably performed via parameters of the
PUBLIC subroutines / functions. As an alternative,
the SMIL may alter PUBLIC variables defined in the
SMCL which have been included into the SMIL via
the Fortran95 USE statement. Moreover, this file fol-
lows these conventions:

– It provides a public module identification string
modstr and a version modver:

CHARACTER(LEN=*), PUBLIC, PARAMETER :: &
modstr = ’<submodel>’

CHARACTER(LEN=*), PUBLIC, PARAMETER :: &
modver = ’<version>’

– The SMCL routines must be resolution indepen-
dent, independent of the base model grid geom-
etry, independent of the parallel environment,
and independent of other submodels.

– STOP statements must be avoided in the code due
to parallel processing. Using a STOP statement
in a parallel environment (e.g., MPI) would only
terminate one process but not on all of them.
Instead of STOP statements, the subroutines of
the SMCL must return a status flag (INTEGER),
which is 0, if no error occurs. This status flag

http://www.mpch-mainz.mpg.de/~joeckel/ncregrid
http://www.mpch-mainz.mpg.de/~joeckel/ncregrid
http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/packages/netcdf/

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 7

can be used by the interface routines (SMIL) to
write information to the output, and/or to ter-
minate the base model in case of severe errors.

– In parallel environments, such as MPI, in-
put/output (i.e. READ-, WRITE-, or PRINT-
statements) must generally occur only in those
SMCL routines, which are exclusively executed
by a dedicated I/O-process. The better way is
to perform this kind of I/O within the SMIL,
where the parallel environment is known.

• messy_<submodel>_*.f90 according to the general
MESSy filename convention (e.g., memory files)
are used if more than one SMCL file is re-
quired (e.g., in case of sub-submodels, for the
sake of clearness, etc.). All conventions for
messy_<submodel>.f90 apply to these files accord-
ingly (example: messy_ncregrid_*.f90)

• <submodel>.nml (see also sections 2.1.3 and 2.1.5) is
a namelist file located in the messy/nml subdirectory
and is part of the user interface. For the SMCL, it
contains the &CTRL namelist, which holds all switches
and parameters for controlling the internal flow and
complexity of the submodel. It might further contain
specific additional namelists used by the SMCL of the
submodel.

2.1.5 The user interface

The user controls the model run including the submodel ac-
tivities (i.e., the executable) via the user interface which is
implemented using the Fortran95 namelist constructs and
a generalized run-script. An overview of the involved files
is outlined:

• xmessy is the general run-script (sh-script). This
script incorporates several tasks which require user
interaction:

– xmessy can be run in the foreground, back-
ground, and be submitted to a job scheduling
system (queuing system). In the latter case,
the script automatically detects the type of the
scheduling system. Specific resources requested
from the used queuing system, e.g., number of
CPUs, time limit, log-file redirection etc., must
be specified by the user in the header of xmessy.

– Directories for data input (initialization files,
files containing gridded, temporal changing
boundary conditions, etc., see section 2.7) and
a working directory (for output of model results
and intermediate files) can be set by the user, if
the (host specific) default is not applicable.

– Some general settings for the base model (e.g.,
the horizontal and vertical resolution, etc.) are
chosen here. These specifications are passed to
the namelist file which is controlling the base
model (i.e., the GCM ECHAM5). The namelist
file is selected with the shell-variable NML_ECHAM
(see below).

– The submodel switches (for user interaction) are
located here. To use a specific submodel, it must
be explicitely activated by

USE_<submodel>=T

If this line is commented out, the submodel is de-
activated. Switches for all submodels are written
by xmessy to the namelist file MESSy.nml.

– The namelist files for controlling a specific sub-
model are selected here, one for internal and cou-
pling control, and one for tracer initialization (if
applicable):

NML_<submodel>=...
NML_<submodel>_T=...

The filenames on the right hand side are
arbitrary; they are copied by xmessy to
<submodel>.nml and <submodel>_t.nml in the
working directory, respectively. This namelist
file selection has only an effect, if the correspond-
ing submodel has been activated. The possibil-
ity to select from different namelist files allows
keeping specific setups (e.g., model experiments)
in parallel. In the same way, also the base model
namelist file can be selected

NML_ECHAM=...

which is copied by xmessy to ECHAM5.nml.

Furthermore, xmessy contains an automatic restart-
facility for running job chains. More information on
xmessy can be obtained by running xmessy -h.

• ECHAM5.nml is the namelist file controlling the base
model. Which namelist file is used, is selected in the
run-script (see above).

• MESSy.nml is the namelist file for switching the sub-
models on/off. This file is automatically written by
the run-script and does not require any user interac-
tion.

• <submodel>.nml is the central namelist file for con-
trolling a specific submodel. It contains the &CTRL
namelist for operating the internal (i.e., the base
model independent) complexity of the submodel,
the &CPL namelist for managing the coupling be-
tween the submodel and the base model, and to
other submodels, and further namelists for control-
ling the import of time dependent gridded bound-
ary conditions via the data import interface (i.e.,
&RGTEVENTS and ®RID namelists). Moreover, it
can contain additional submodel specific namelists
used in the SMCL. In case a submodel incorporates
one or more sub-submodel(s), the namelists of the
sub-submodel(s) are called &CTRL_<sub-submodel>
and &CPL_<sub-submodel>, respectively.

• <submodel>_t.nml is the submodel specific namelist
file controlling the tracer initialization at the begin-
ning of a model run. Import of initial tracer data
is performed via the data import interface. For this,
the file contains one or more ®RID namelists for
NCREGRID (see NCREGRID documentation).

8 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

Within the namelist files, variables (beginning with $)
are automatically replaced by the equivalent shell vari-
ables of xmessy, e.g., the input paths (i.e., the shell vari-
ables INPUTDIR_MESSY and INPUTDIR_ECHAM5_INI, see sec-
tion 2.7).

2.2 The ECHAM5/MESSy call tree

An ECHAM5/MESSy model run can be subdivided into
three phases: the initialization phase, the time integra-
tion phase (time loop), and the finalizing phase (cleanup).
MESSy provides several entry points at which the submod-
els interact with the base model ECHAM5 as shown in Fig-
ure 1.

2.2.1 The initialization phase

The initialization phase comprises 5 entry points:

• messy_initialize

– first initializes the generic submodel
main switch, i.e., the switches (USE_<submodel>)
of activated submodels are set to .true., by im-
porting the &CTRL namelist from MESSy.nml.

– subsequently calls all initialization rou-
tines of the activated submodels. In
<submodel>_initialize, both, the &CTRL
and &CPL namelist of an activated submodel
are read. This is performed by calling the
SMCL subroutine <submodel>_read_nml (in
messy_<submodel>.f90) and the SMIL sub-
routine <submodel>_read_nml_e5 (PRIVATE,
in messy_<submodel>_e5.f90), respectively.
These calls are performed only by a dedicated
I/O-process in the parallel environment. All
namelist entries are then distributed to the dif-
ferent processes in <submodel>_initialize.

• messy_new_tracer

– first initializes the generic submodel main tracer
in order to provide the framework for subsequent
definition of chemical species by the activated
submodels (see section 2.4.1)

– provides the main entry point for the submodels
to define chemical species (see section 2.4.2).

– at the end sets up the memory and informa-
tion structures for all tracers in all tracer sets
(second part of initializing the generic submodel
main tracer).

• messy_init_memory

– initializes the generic submodel main data for
data exchange between the submodels and the
base model

– links the tracer memory to the data trans-
fer / exchange interface (i.e., currently to the
ECHAM5 stream facility, see section 2.3)

– provides the main entry point for the defini-
tion of submodel specific data objects (currently
stream elements, see section 2.3) and the alloca-
tion of local memory, which can or must not be
represented by data objects

• messy_init_tracer

– handles the tracer initialization (see sec-
tion 2.4.3)

– provides the main entry point for sub-
model specific tracer initializations. The
easiest way to perform a submodel spe-
cific tracer initialization, is by call-
ing the subroutine tracer_init(modstr)
of the generic submodel main tracer
(messy_main_tracer_e5.f90) from the SMIL
subroutine <submodel>_init_tracer. Here,
modstr= <submodel> is the identification string
of the submodel (see section 2.1.4). Tracer
fields are then imported via the data im-
port interface by processing the namelist file
<submodel>_t.nml.

• messy_init_coupling

– prepares the coupling to other submodels and
to the base model using the information that
was imported from the &CPL namelist in
messy_initialize.

2.2.2 The time integration phase

The time integration phase (time loop) comprises 7 en-
try points. At the first and last (messy_global_start
and messy_global_end) the activated submodels have
access to the entire data fields after decomposi-
tion on the different processes in the parallel en-
vironment. Note that this is different from ac-
cess to the global data without decomposition! The
other 5 entry points (messy_local_start, messy_vdiff,
messy_convec, messy_physc, and messy_local_end) are
within the local loop. The local loop takes care of an ef-
ficient vectorization and parallelization. The drawback is
that within the local loop, the submodels only have ac-
cess to a subset of the data fields after decomposition. For
fields in GRIDPOINT representation this is usually a subset
of vertical columns. Therefore, these entry points are only
suitable for calculations, that do not require information
about horizontally neighboring grid boxes. It is recom-
mended that all submodels use messy_physc as the main
entry point. Only in very few cases, it may be necessary to
use messy_convec or messy_vdiff which occur earlier and
may allow feedback to other processes that are calculated
before messy_physc. Note that messy_convec is not called
in the first time step (lstart).

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 9

2.2.3 The finalizing phase

For the finalizing phase, there is only one entry
point (messy_free_memory). Its purpose is to deal-
locate submodel memory, which has been allocated in
messy_init_memory. This is only required for memory
that has been allocated directly by the submodel. The
memory of objects defined by using the data transfer and
export interface routines (currently stream elements, see
section 2.3) and tracers is deallocated automatically and
need not to be considered here.

A detailed summary of the implementation of all 4 MESSy
layers can be found in the accompanying ECHAM5/MESSy
reference card (messy_echam5_ref.pdf).

2.3 Memory management and data export

In the current version 0.9 of MESSy, the data transfer and
export interface (including the memory management, see
section 2.1.2) is based on the ECHAM5 stream implemen-
tation. Streams are sets of one- to four-dimensional For-
tran95 arrays of type REAL(DP) used to store global data
sets in various representations (see Table 2), and allow a
flexible, POINTER based data handling. The contents of
the streams can be easily output to netCDF files. Streams
are very useful for sharing data between different submod-
els and between submodels and the base model (generic
submodel main data). However, the original ECHAM5 im-
plementation has been significantly extended to meet the
needs of a larger number of applications. The additional
representations are indicated in Table 2.

When the model is executed in parallel mode, the data
in stream elements of representation GRIDPOINT, FOURIER,
SPECTRAL, and LAGRANGIAN are distributed automatically
(i.e., decomposed) amongst the different processes. Stream
elements of the representations COLUMN, ARRAY1D, and
SCALAR exist for all parallel processes individually. Input /
output and restart handling is only performed for the ded-
icated I/O process. Therefore synchronization of stream
elements in these representations between the different pro-
cesses running in parallel needs to be implemented depend-
ing on the application.

Another extension of the stream implementation allows the
online calculation and output of the time average and (op-
tionally) the corresponding standard deviation of stream
elements, instead of instantaneous values. More detailed
information is accessible via the MESSy web-pages.

2.4 Tracers

The generic submodel main tracer is responsible for han-
dling chemical compounds. Although a similar facility is
included in the original ECHAM5, it has been completely
re-implemented as generic submodel to achieve a higher
flexibility and modularity. The handling of tracers in the
model setup can be subdivided into two parts:

1. The setup of the overall framework for tracers, which
is dependent on the base model, for instance, on the

• domain (ocean or atmosphere, global or re-
gional)

• representation (spectral, gridpoint, Lagrangian)

• dimension (box model, column model, 2D-, 3D-
model)

• resolution (size of the tracer data field)

• decomposition in a parallel environment

2. The access of the different submodels to the tracers
within this framework, e.g.,

• definition of submodel-specific tracers

• sharing tracers between different submodels

Within the overall framework, different sets of trac-
ers (e.g., in different representations, like GRIDPOINT, or
LAGRANGIAN), which coexist independently can be defined.
Within such a set of tracers, a tracer consists of meta-data
information describing the characteristics of the chemical
compound and the field with the values (i.e., the tracer
abundance or the amount of the tracer). Each tracer in a
set is identified un-ambiguously by its unique name. The
name of a tracer is composed of a base-name and an op-
tional sub-name, in order to allow for the use of tracer
classes, e.g., for ’tagged’ tracers.

2.4.1 Overall Framework for tracers (tracer sets)

For setting up the overall framework, the SMCL of the
generic submodel main tracer provides the following sub-
routines (messy_main_tracer.f90):

• new_tracer_set initializes the framework for the
meta-data information for a new tracer set. Up to
10 independent sets of tracers are supported.

• setup_tracer_set allocates the memory for the
tracer data of one specific tracer set, after all trac-
ers of the set have been defined.

• get_tracer_set gives access to meta-data and tracer
data of one specific tracer set.

• clean_tracer_set removes one specific tracer set.

• print_tracer_set prints a summary of the meta-
data information of one specific tracer set.

• print_tracer_set_val prints a summary of the
tracer data of one specific tracer set.

• tracer_error_str returns an information string for
the status flag returned by the subroutines of the
SMCL of the generic submodel main tracer.

In the current ECHAM5/MESSy implementation, these
SMCL routines are called within the SMIL of the generic
submodel main tracer to set up two different, inde-
pendent tracer sets: one in GRIDPOINT representation,
and one in LAGRANGIAN representation. In particular,
the PUBLIC SMIL routines (messy_main_tracer_e5.f90),
which are called by the central submodel control interface
(messy_main_control_e5.f90, see section 2.2), are:

messy_echam5_ref.pdf

10 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

Table 2: Different stream representations

automatic output original
REPRESENTATION RANK dimensions decomposition possible ECHAM5
GAUSSIAN = GRIDPOINT 4 latitude × level × species × longitude yes no yes
GAUSSIAN = GRIDPOINT 3 latitude level × longitude yes yes yes
GAUSSIAN = GRIDPOINT 2 latitude × longitude yes yes yes
GAUSSIAN = GRIDPOINT 1 (unused) yes no yes
FOURIER 4 yes no yes
SPECTRAL 3 level × Re/Im × wave number yes yes yes
SPECTRAL 2 Re/Im × wave number yes yes yes
LAGRANGIAN 1 number of air parcels yes yes no
COLUMN 1 level no yes no
ARRAY1D 1 arbitrary length no yes no
SCALAR 0 scalar no yes no

• main_tracer_new_tracer initializes the framework
for the meta-data information of the two tracer sets.

• main_tracer_init_memory initializes the memory
for the tracer data of the two tracer sets, after all
submodels have contributed their individual tracer
definitions.

• main_tracer_free_memory deallocates the memory
used for the tracer data of the two tracer sets.

• main_tracer_init_tracer organizes the tracer ini-
tialization (see section 2.4.3) of the two tracer sets.

For output and decomposition of tracers among the differ-
ent processes in a parallel environment, the generic sub-
model main tracer is linked to the data transfer/export in-
terface.

2.4.2 Tracer access of submodels

For the access to tracers within the specific submod-
els, the SMCL of the generic submodel main tracer
(messy_main_tracer.f90) provides the following subrou-
tines:

• new_tracer is used to define a new tracer as member
of a specific tracer set.

• get_tracer is used to access meta-data information
and tracer data of a tracer in a specific tracer set.

In addition, the SMIL of the generic submodel main tracer
(messy_main_tracer_e5.f90) provides the following sub-
routines:

• tracer_init is used to initialize a (sub-)set of tracers
via the data import interface.

• tracer_halt is used to output a status information
and to terminate the model, if a subroutine of the
generic submodel main tracer returned an error sta-
tus.

Tracer access within a specific submodel is exclusively per-
formed within the SMIL of the submodel.

2.4.3 Tracer initialization

The initialization of tracers in ECHAM5/MESSy is a three
stage process, which is individually controllable for each
tracer (in the following, given options in parentheses apply
to the subroutine call of new_tracer(...)):

1. The tracer is initialized from a restart file, if all of the
following conditions are met:

• ECHAM5/MESSy is in the first time step after
starting in rerun mode (lrerun=.TRUE.), e.g.,
in job chains.

• The tracer has been dumped to the
restart file, i.e., the data is available
(..., lrestart=.true.,...). If the tracer
is not available in the restart file, but the
tracer is labeled to be absolutely required
(..., lcontnorest=.false.,...) the model
is terminated.

2. The tracer is initialized via the data import interface
used in the SMIL (<submodel>_init_tracer) of the
specific submodel (CALL tracer_init(modstr)), if
all of the following conditions are met:

• ECHAM5/MESSy is in the first time step (very
first time step or first time step in rerun mode,
i.e., lstart=.TRUE. or lrerun=.TRUE.).

• The tracer is named in one of the ®RID
namelists in <submodel>_t.nml.

• The tracer has not already been initial-
ized from a restart file, or the tracer has
been already initialized from a restart file,
but the tracer is labeled to ignore this
(..., lforce_init=.true.,...).

• The tracer is not manually labeled to be already
initialized (..., linit=.true.,...).

Note that with this construction the first submodel
with an entry for a specific tracer in the correspond-
ing <submodel>_t.nml determines the initialization
of this tracer.

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 11

3. The tracer is set to a constant value
(..., vini=<value>,...) with the default being
0, if it is not yet initialized.

2.5 Available submodels

A comprehensive and up to date list of available MESSy
submodels with further detailed information and contact
persons is available at the MESSy web-pages (http://www.
messy-interface.org).

2.6 Directory structure

The directory structure of the ECHAM5/MESSy distribu-
tion is that of the ECHAM5 distribution with an addi-
tional subdirectory messy, according to the MESSy stan-
dard. The SMIL directory is messy/e5.

2.7 Input files

Input files for ECHAM5/MESSy can be divided into 2
groups: Files for the base model ECHAM5 and files for
the MESSy submodels. In the run-script xmessy, the shell
variables INPUTDIR_ECHAM5_INI and INPUTDIR_MESSY are
used to specify the two input base directories, if the default
directory structure does not apply. This can be useful if the
ECHAM5 input is already available in a read-only directory
and the latest MESSy submodel data must be saved else-
where. In the run-script xmessy the default directories are
set according to the currently supported hosts. Running
xmessy -h gives more information on supported hosts.

Within the INPUTDIR_ECHAM5_INI directory, the ECHAM5
specific input files need to be grouped into subdirectories
according to their horizontal resolution, e.g., T21, T31, T42,
T63, T85, T106, etc.

The subdirectory tree of INPUTDIR_MESSY is organized as

raw/<submodel>/*.nc
raw/<submodel>/misc/*
raw/<submodel>/README

i.e., each MESSy submodel has one subdirectory under
raw with the subdirectory name being exactly identical
to the name of the submodel. In the subdirectory tree
raw, gridded data is stored in their original resolution as
netCDF files (*.nc). Those input data which are not avail-
able as netCDF files (e.g., because they are not defined
on a global grid), are stored in the submodel subdirectory
<submodel>/misc/. In the file README in the submodel
subdirectory the submodel specific input data are briefly
explained and references are given.

Since gridded MESSy data are usually imported via the
data import interface, i.e., rediscretized to the actual model
resolution, data in its original resolution is sufficient.

2.8 MESSy utilities

The ECHAM5/MESSy distribution contains several utili-
ties to facilitate several aspects of the model development,
of the model application, and of the post processing and
the data visualization. These utilities can be classified into
two categories: one group for direct user interaction, and
one group only used indirectly.

2.8.1 User utilities

2.8.1.1 xecham is a tcsh-script located in the base di-
rectory of the ECHAM5/MESSy distribution (from where
it must also be started). This script guides the user au-
tomatically through all steps of installing and running
ECHAM5/MESSy. So far, it has been used on PC/Linux
and Compaq-Alpha/OSF1 platforms.

2.8.1.2 mchlog is a ksh-script located in messy/util
for finding the correctly labeled changes in the code (see
section 5.6).

2.8.1.3 nc2mc is a tcsh-script in messy/util for cre-
ating a multi-netCDF descriptor file for Ferret (http:
//ferret.wrc.noaa.gov/Ferret/). With such a meta-
file, a time-series of data which is subdivided into several
netCDF files (like the ECHAM5/MESSy output), can be
addressed as one comprehensive dataset in Ferret. More
information can be obtained with nc2mc -h.

2.8.1.4 ncdx is a Fortran95 program located in
messy/box to make netCDF files (such as the
ECHAM5/MESSy output) OpenDX (http://www.
opendx.org) compliant.

2.8.1.5 nc2dxmc is a tcsh-script in messy/util for
creating a multi-netCDF descriptor file for OpenDX (http:
//www.opendx.org/). With such a meta-file, a time-
series of data which is subdivided into several netCDF
files (like the ECHAM5/MESSy output), can be addressed
as one comprehensive dataset in OpenDX by using the
macro mc4dx. More information can be obtained with
nc2dxmc -h.

2.8.1.6 ncregrid is the box-model of the MESSy data
import interface (and therefore located in messy/box), i.e.,
the stand-alone version for offline rediscretization of 2D and
3D data between arbitrary, rectangular global, geo-hybrid
grids.

2.8.2 Auxiliary utilities

The auxiliary utilities, which are not for direct users inter-
action, are all located in messy/util:

2.8.2.1 efchk, lst2log.gawk, efchk-sum are scripts
used for the comprehensive forcheck (http://www.
forcheck.nl) analysis of the code (gmake check).

http://www.messy-interface.org
http://www.messy-interface.org
http://ferret.wrc.noaa.gov/Ferret/
http://ferret.wrc.noaa.gov/Ferret/
http://www.opendx.org
http://www.opendx.org
http://www.opendx.org/
http://www.opendx.org/
http://www.forcheck.nl
http://www.forcheck.nl

12 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

2.8.2.2 messy check . . . are tcsh-scripts to perform
some (only the most important) tests for MESSy confor-
mity of the code (gmake messycheck).

2.8.2.3 zip.sh, zip1r.sh, zipall.sh are sh-scripts
for packing the distribution (gmake zip, gmake zip1r,
gmake zipall).

2.8.2.4 sfmakedepend.pl is a PERL-script for gen-
erating the file dependencies for (g)make (see http://
people.arsc.edu/~kate/Perl/sfmakedepend, this origi-
nal file has been modified, however).

3 Installation of ECHAM5/MESSy

Before the installation of the ECHAM5/MESSy distribu-
tion can be successful, the following software packages must
be available / installed on the computer system:

• a C-compiler

• a Fortan95 compiler

• the netCDF library version 3.5.1b or higher (http:
//www.unidata.ucar.edu/packages/netcdf/)

• if ECHAM5/MESSy should be run in parallel mode
(which is highly recommended), the Message Pass-
ing Interface (MPI) library must be available (http:
//www-unix.mcs.anl.gov/mpi/index.html, http:
//www-unix.mcs.anl.gov/mpi/mpich/)

• ECHAM5/MESSy can optionally make use of pre-
installed libraries BLAS and LAPACK. If these libraries
are not available, they are automatically build within
the ECHAM5/MESSy distribution (subdirectories
blas and lapack).

• If one of the MESSy submodels MECCA (Module
Efficiently Calculating the Chemistry of the Atmo-
sphere, Sander et al. [2005]) or SCAV should be
used, the Kinetic Pre-Processor (KPP, Damian et al.
[2002], http://www.cs.vt.edu/~asandu/Software/
KPP) must be available.

• Installation of the post-processing / visualiza-
tion software Ferret (http://ferret.wrc.noaa.
gov/Ferret/) and / or OpenDX (http://www.
opendx.org) is recommended, although not required
for using ECHAM5/MESSy.

If these prerequisites are met, the installation of the
ECHAM5/MESSy distribution on supported platforms is
straightforward:

1. Unpack the ECHAM5/MESSy distribution with
unzip echamX.X.XXx messy Y.Yy.zip
and change into the newly created directory
(X.X.XXx denotes the version of the used ECHAM5
base model and Y.Yy the MESSy version, e.g.,
echam5.2.02a messy 0.9.zip).

2. Edit the file
config/mh-<arch>
for your system (<arch>) and and adapt the required
system specific variables (compiler, compiler flags,
etc.) and the required host specific settings (paths to
netCDF- and MPI-libraries and include-files). Host
specific settings for the same system can be struc-
tured using a case-construct:

case ‘uname -n‘ in
<host_1>)

settings for host ’host_1’
;;

<host_2>)
settings for host ’host_2’
;;

*)
default settings
;;

esac

3. Update the Fortran95 code for those submodels for
which the code is (partly) generated automatically,
according to the users specifications. More details on
automatic code generation can be found in the re-
spective descriptions of the submodels.

4. Configure the ECHAM5/MESSy distribution for the
used system with
./configure
Optionally, the following options can be used:

• --host=... for using a cross-compiler (i.e., the
platform where ECHAM5/MESSy is run is dif-
ferent from the platform it is compiled on)

• --disable-MESSY to configure ECHAM5 with-
out MESSy

• --disable-MPI to configure ECHAM5/MESSy
without MPI, i.e., for a single process mode

5. Build the executable with:
gmake
or
make
dependent on your system. Note that
(g)make help
provides you a list of further build-targets.

The currently supported and tested platform / compiler
combinations are listed in Table 3. A more up to date list
is available on the MESSy web-pages.

If ECHAM5/MESSy should be ported to a new platform,
in principle only a system specific file config/mh-<arch>
for the new platform must be created.

http://people.arsc.edu/~kate/Perl/sfmakedepend
http://people.arsc.edu/~kate/Perl/sfmakedepend
http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/packages/netcdf/
http://www-unix.mcs.anl.gov/mpi/index.html
http://www-unix.mcs.anl.gov/mpi/index.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.cs.vt.edu/~asandu/Software/KPP
http://www.cs.vt.edu/~asandu/Software/KPP
http://ferret.wrc.noaa.gov/Ferret/
http://ferret.wrc.noaa.gov/Ferret/
http://www.opendx.org
http://www.opendx.org

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 13

Table 3: Supported platforms for ECHAM5/MESSy.
Hardware System Fortran95 Compiler remarks
PC Linux 2.4 Lahey/Fujitsu 6.2a
PC-Cluster Linux 2.4 Lahey/Fujitsu 6.2a
PC(-Cluster) Linux 2.4 Intel ifort 8.1 unresolved compiler issues; compiler crashes
Compaq/Alpha OSF1 5.1a native f95 unresolved issues with runtime checks; code runs
IBM-p690 AIX mpxlf95 r
NEC-SX6 SUPER-UX rev276 cross compiler on Linux 2.4
MAC Darwin IBM cooperatively supported

4 Running ECHAM5/MESSy

Before ECHAM5/MESSy can be run successfully, the ini-
tialization data for ECHAM5 in the desired grid resolu-
tion and the MESSy input data must be available (see sec-
tion 2.7).

The central instance of the user interface (see section 2.1.5)
for running ECHAM5/MESSy is the run-script (sh-script)
xmessy, which automatically detects

• the operating system:

– OSF1

– Linux

– AIX

– SUPER-UX

– Darwin

• the job scheduling system, if xmessy has been sub-
mitted to such a system:

LL (IBM Load Leveler)

NQS I (Network Queuing System I)

NQS II (Network Queuing System II)

SGE (Sun Grid Engine, formerly CODINE)

SCORE

• the hostname

For the known combinations of hostname, operating sys-
tem, and job scheduling system, xmessy can be applied
immediately. To setup a model experiment, the user has to

• set the embedded flags in the header section for
the queuing system xmessy should be submitted to.
These settings have no meaning if xmessy is run in
the foreground or background.

• set the number of processes for the parallel environ-
ment (NCPUS). This setting is ignored, if the number
of processes is requested as a resource via the queu-
ing system. In case ECHAM5/MESSy has been com-
piled without MPI (i.e., configured with the option
--disable-MPI), NCPUS must be set to zero.

• set some basic settings for the base model, e.g.,

– the vector blocking and decomposition (NPROMA,
NPROCA, NPROCB),

– the horizontal resolution (HRES),

– the vertical resolution (VRES),

– the start-date of the integration (START YEAR,
START MONTH, START DAY)

– the stop-date of the integration, if acti-
vated in the namelist-file chosen by NML_ECHAM
(STOP YEAR, STOP MONTH, STOP DAY)

– the mode of ECHAM5 (e.g., column mode,
nudging mode, which sea surface temperature,
etc.).

• set the base directory of the ECHAM5/MESSy dis-
tribution, the data input path for ECHAM5 and the
MESSy submodels, the working directory (where in-
termediate and output files are written to), the di-
rectory containing the namelist files of the submodel,
and the name of the executable. These settings have
only to be specified, if the default settings are not
applicable.

• select the submodels which should be activated.

• choose the namelist files for the base model and the
submodels. For control of the activated submodels,
the user has to edit the selected namelist files in the
namelist file directory. All variables in the namelist
files (beginning with $) will be replaced by the re-
spective shell-variables defined in xmessy.

After these settings, xmessy can be run in the foreground
(output to the current shell), background (redirection to a
log-file is possible according to the syntax of the used shell),
or be submitted to a job scheduling system (output redirec-
tion via embedded flags of the used queuing system). Up-
to-date information on hostnames, operating systems, and
queuing systems can be obtained by running xmessy -h in
foreground.

xmessy terminates with an error message, if, for instance,

• the continuation of a job chain has been triggered,
however, the required rerun files are not present,

• a core file has been found, i.e., the executable crashed
during execution,

• xmessy has been started in foreground or background
on a platform where submission to a job scheduling
system is required,

14 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

• the number of processes cannot be determined, be-
cause the user did not request it by using the embed-
ded flags for the queuing system.

On systems not yet known to xmessy, the run-script will
terminate if

• the operating system is not recognized or not yet sup-
ported,

• the hostname is not recognized or not yet supported,

• the parallel environment is not recognized or not yet
supported.

Since these information are required at several places in the
script, the corresponding error messages are labeled with a
number, in order to be able to find the place where the error
occurred in the script. This is especially helpful for the im-
plementation of new operating systems and/or hostnames,
which is best done iteratively.

5 ECHAM5/MESSy coding guide-
lines

The quality assurance (QA) of new ECHAM5/MESSy code
is applied on three levels,

1. the ISO/IEC-1539-1 Fortran95 standard conform im-
plementation of MESSy which is analyzed using
forcheck (http://www.forcheck.nl)

2. the MESSy standard conform implementation of all
submodels

3. some coding guidelines as listed in the following

5.1 Contribution of new submodels

In order to cope with the increasing complexity, and to
meet the overall requirements of MESSy, future contribu-
tions of new submodels must comprise

• a self-consistent box model

• a complete list of input and output parameters

• a brief manual (what does it do?) and web page

5.2 File names and directories

• The file names must be messy_<submodel>.f90 for
the submodel core file and messy_<submodel>_e5.f90
for the submodel interface file. If the
submodel needs additional files, they can
be called messy_<submodel>_*.f90 and
messy_<submodel>_*_e5.f90, respectively.

• Submodel interface files (SMIL, *_e5.f90) must be
in the messy/e5/ directory and core (SMCL) files in
the messy/src/ directory.

• Memory files (*_mem.f90 or *_mem_e5.f90) must not
contain any SUBROUTINEs or FUNCTIONs. They
must be used at least twice but not only by SMCL
and corresponding SMIL file.

5.3 Data exchange via Fortran95 USE
statements

• Core files (messy/src/*.f90) must not USE mod-
ules from interface files (messy/e5/*_e5.f90) or base
model files (modules/mo_*.f90).

• Core files (messy/src/*.f90) must not USE modules
from other submodels.

• Data objects (stream elements) from other submodels
must be selected via the CPL-namelist.

5.4 Data exchange via the data transfer
and output interface and tracers

• The memory stream must have the name of the sub-
model. If more than one stream is created, additional
streams can be called <submodel>_*.

• Submodels are allowed to use streams created by
other submodels (currently with get_stream). Af-
ter checking that the stream was successfully opened,
they can read data from the stream elements in that
stream with get_stream_element. However, they
must neither add stream elements to streams of other
submodels, nor must they change existing stream el-
ements of other submodels.

• Submodels are allowed to change the tendencies of
any tracer, including those that were created by other
submodels.

• get_tracer, get_stream, or get_stream_element
must not be used inside the time loop. The re-
spective pointers must be set during the coupling-
initialization.

5.5 Parallel environment

• STOP statements in core (SMCL) files are not al-
lowed. As alternative, a non-zero INTEGER error
status must be returned to the calling SMIL routine,
in order to terminate the system in the parallel envi-
ronment from there.

http://www.forcheck.nl

Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual 15

5.6 Labels

All lines of MESSy-code in the base model and all lines
in MESSy files altered by anybody else than the submodel
maintainer must be clearly labeled. The label

! ii_aa_yyyymmdd

consists of the prefix of the institution (ii), followed by
an underscore, the author’s initials (aa), a second under-
score, and the date of change in the 8-digit format (year,
month, day), e.g., mz_pj_20040727. A list of institutions
and authors can be found in the file AUTHORS_MESSY of the
ECHAM5/MESSy-distribution. If just one line is changed
in the code, the comment can be added at the end of the
line. If a whole block of Fortran code is added or changed,
it should be enclosed between two such comment lines, the
first ending with +, the second ending with -, e.g.,

! mz_pj_20040727+
<changed code>
! mz_pj_20040727-

Within the block, the reasons for changing the code must
be explained.

With the tool ./messy/util/mchlog (see section 2.8.1)
correctly commented lines and blocks in the source code
can be traced.

5.7 Loops

To make loops easily recognizable, they should be marked
with a Fortran label. Loop variables must start with the
letter j. Depending on the type of loop (e.g., level, tracer,
or vector), the names jk, jt, or jp should be used, respec-
tively:

level_loop: DO jk=1,nlev
tracer_loop: DO jt=1,ntrac_gp
vector_loop: DO jp=1,kproma
...

END DO vector_loop
END DO tracer_loop

END DO level_loop

If global fields in GRIDPOINT representation need to be ac-
cessed, the following variable names are recommended:
jxg = ilon(jp,jrow) x-value, global (longitude)
jyg = ilat(jp,jrow) y-value, global (latitude)

The index-fields ilon and ilat can be accessed via

USE mo_geoloc, ONLY: ilon, ilat

The current row within the local loop is called jrow or
nrow(2). Its value lies between 1 and ngpblks.

USE mo_control, ONLY: nrow
...
INTEGER :: jrow
...
jrow = nrow(2)
...

The value of the vector loop length (kproma), which is in
general dependent on the row within the local loop, can be
calculated with this code:

USE mo_decomposition, ONLY: &
dcl => local_decomposition

...
IF (jrow == dcl%ngpblks) THEN
kproma = dcl%npromz

ELSE
kproma = dcl%nproma

ENDIF

Finally, the number of tracers can be accessed with

USE messy_main_tracer_mem_e5, ONLY: &
ntrac_gp, ntrac_lg

for tracers in GRIDPOINT (_gp) and LAGRANGIAN (_lg) rep-
resentation, respectively.

6 Outlook

The following details are subject to change for future ver-
sions of ECHAM5/MESSy:

• The ECHAM5 stream implementation (which is cur-
rently the base of the MESSy data transfer and ex-
port interface) will be replaced by a much more flex-
ible and self-consistent (i.e., ECHAM5 independent)
memory channel object implementation:

– coded as generic MESSy submodel for higher
modularity

– only one central namelist file controlling all as-
pects of data output for all memory channels
and memory channel objects (including trac-
ers): output frequency, output files, output for-
mat, output format specific conventions (e.g.,
OpenDX compliant output without ncdx), etc.

– tracers are consistently linked, i.e., input/output
parameters (lrestart, lcontnorest) in tracer
definitions (see section 2.4.3) will become obso-
lete

• User interface (see section 2.1.5): All namelist files
are named <submodel>.nml and <submodel>_t.nml.
Different sets for different model setups will be
grouped into various subdirectories of messy/nml.
Only the namelist file subdirectory has to be selected
in the run-script xmessy. The namelist file subdirec-
tories will also include netCDF-file specific regridding
namelist files.

• The compilation utility sfmakedepend.pl will rec-
ognize dependencies of the SMIL modules to SMCL
Fortran95 module files.

16 Jöckel & Sander: ECHAM5/MESSy (Version 0.9) User Manual

• The BMIL of ECHAM5/MESSy will be reorganized
such that the SMIL files do not require further direct
connection (i.e., USE of) of ECHAM5 parameters and
routines (e.g., see section 5.7). The link is performed
via messy_main_data_e5 and a few additional files
of the BMIL.

• The subroutines <submodel>_read_nml and
<submodel>_read_nml_e5 will be renamed to
<submodel>_read_nml_ctrl and <submodel>_read_nml_cpl,
respectively.

• A pre-regridding facility for MESSy input data will be
included in the distribution. It can be activated, via
an additional switch in the run-script xmessy. This
will automatically select the respective input-path
and adjust the required regridding-namelists. The
input-path with (horizontally) pre-regridded netCDF
files will be named as the horizontal resolution (T21,
T42, T63, . . .). It will be parallel to the raw directory
and organized in the same way (see section 2.7). Pre-
regridding will speed up the initialization phase of the
model when using large datasets, and also the inte-
gration phase when time dependent offline data (with
high frequency) are used as boundary conditions.

• The output of control runs for various standard model
setups will be made available in a web-accessible
database.

Acknowledgments

For helpful suggestions about this manual we would like
to thank Joachim Buchholz, Astrid Kerkweg, Holger Tost,
and Michael Traub.

References

Damian, V., Sandu, A., Damian, M., Potra, F., and
Carmichael, G. R.: The kinetic preprocessor KPP - a
software environment for solving chemical kinetics, Com-
put. Chem. Eng., 26, 1567–1579, 2002.

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld,
J.: Technical Note: The Modular Earth Submodel Sys-
tem (MESSy) - a new approach towards Earth System
Modeling, Atmos. Chem. Phys., this issue, 2005.

Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J.:
Technical Note: The new comprehensive atmospheric
chemistry module MECCA, Atmos. Chem. Phys., this
issue, 2005.

	1 Introduction
	2 The ECHAM5/MESSy model structure
	2.1 Implementation of the MESSy interface
	2.1.1 The base model layer (BML)
	2.1.2 The base model interface layer (BMIL)
	2.1.3 The submodel interface layer (SMIL)
	2.1.4 The submodel core layer (SMCL)
	2.1.5 The user interface

	2.2 The ECHAM5/MESSy call tree
	2.2.1 The initialization phase
	2.2.2 The time integration phase
	2.2.3 The finalizing phase

	2.3 Memory management and data export
	2.4 Tracers
	2.4.1 Overall Framework for tracers (tracer sets)
	2.4.2 Tracer access of submodels
	2.4.3 Tracer initialization

	2.5 Available submodels
	2.6 Directory structure
	2.7 Input files
	2.8 MESSy utilities
	2.8.1 User utilities
	2.8.1.1 xecham
	2.8.1.2 mchlog
	2.8.1.3 nc2mc
	2.8.1.4 ncdx
	2.8.1.5 nc2dxmc
	2.8.1.6 ncregrid

	2.8.2 Auxiliary utilities
	2.8.2.1 efchk, lst2log.gawk, efchk-sum
	2.8.2.2 messy_check_…
	2.8.2.3 zip.sh, zip1r.sh, zipall.sh
	2.8.2.4 sfmakedepend.pl

	3 Installation of ECHAM5/MESSy
	4 Running ECHAM5/MESSy
	5 ECHAM5/MESSy coding guidelines
	5.1 Contribution of new submodels
	5.2 File names and directories
	5.3 Data exchange via Fortran95 USE statements
	5.4 Data exchange via the data transfer and output interface and tracers
	5.5 Parallel environment
	5.6 Labels
	5.7 Loops

	6 Outlook

